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What is Big Data?

* Managing data sets that are so large or complex that traditional data
processing applications are inadequate

 E.g., Relational Database Servers

» Challenging include storing, managing, processing, analyzing,
visualizing, understanding
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The Scale of Big Data

Big Data = Transactions + Interactions + Observations

Petabytes

Terabytes

Gigabytes

Megabytes

Sensors / RFID / Devices

Mobile Web
User Click Stream
Web logs WEB
Offer history

CRM

Segmentation

Offer details
ERP

Purchase detail
Purchase record Support Contacts

Payment record

Increasing Data Variety and Comple

Customer Touches

BIG DATA

Sentiment

A/B testing
Dynamic Pricing

Affiliate Networks
Search Marketing
Behavioral Targeting

Dynamic Funnels

User Generated Content
Social Interactions & Feeds

Spatial & GPS Coordinates

External Demographics

Business Data Feeds

HD Video, Audio, Images
Speech to Text

Product/Service Logs

SMS/MMS
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Size

BRAND MARKETING AGENCIES DIGITAL TV/VIDEO CRE#

ITAL

ow Facebook Manages A 300-
Petabyte Data Warehouse, 600
Terabytes Per Day

How did Facebook manipulate the Hive storage format to enable
it to deal with a data warehouse that stores some 300 petabytes
and takes in about 600 terabytes per day? RCFile (record-
columnar file format) wasn't enough, so enter ORCFile.

By David Cohen | April11, 2014

' Data Science in the Wild, Spring 2019



Data Complexity

- Multiple formats of storage:
- Structured data
« Semi-structured (XML, JSON)
- Text (Web)
* Pictures
* Video feed
« Genes
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Contemporary Data Warehouses

Sensor data:
App data

Step counters
Ubigtious devices

Rich media:
X pics
MR

Other:
Full genome
sequence
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Structured Data:
Hospitalizations
Drugs taken
Demographics

Semi-structure
data:
Hospitalizations
Drugs taken
Demographics




Data Velocity

- Data is generated and processed extremely fast
« Decision-making is done by bots

* Online recommendations

* Pricing

« Ads
- Data is managed in the cloud (huge clusters)

,f.[ Data Science in the Wild, Spring 2019



Older and Newer Solutions

Processing Node

Parallelizing data has been
a solid solution for decades.
It required special super-
computers and dedicated
software
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But recently, parallelization
was made more ubiguitous,
using commodity servers
and open-source software
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Basic ldea: Parallelism

1 2 -54 66 The Red
¢ Find average e Search
¢ Find median e Count words
e |s the third number positive? ¢ Translate?
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Fox

Jumped

NYC LA Boston Chicago

¢ Find average income

¢ Find optimal route?




Amdahl's law

1

« Optimally, the speedup from parallelization would be Statency (8) = | —pt 2’
linear, but very few parallel algorithms achieve optimal ’
speedup
- The potential speedup of an algorithm on a parallel Amdahl's Law
computing platform is given by Amdahl's law: U ——
* Siatency 1S the potential speedup in latency of the 18 T !
execution of the whole task: 16 J/ by
/oL L | ] e 7%
* S is the speedup in latency of the execution of the 14 v o
parallelizable part of the task; 12 A
* p is the percentage of the execution time of the 'gf_ 10 i -~ w1 .
whole task concerning the parallelizable part of the 7 / =T
task before parallelization 6 Y
/
- For example, if 90% of the program can be parallelized, : //// S S S S s
the theoretical maximum speedup using parallel , /// """
computing would be 10 times no matter how many .
processors are used. "N T e 2 N3 REYIEEYEEE

Number of processors

Q
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Summary

» Data is becoming big
 Large, complex, and fast
- Parallelization is the only solution we currently have

Q
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Technological Architecture

In Memory Data Scripting
Data Warehouse

Processing MapReduce / YARN

Storage i .
Hadoop Distributed File System (HDFS)
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Istory of Hadoop

- Based on research by Blelloch, Gorlatch
and others into simple distributed
operations

* Implemented of a distributed file system
by Google (2004

- GFS + MapReduce + BigTable (closed code

» “MapReduce can be considered a simplification
and distillation of some of these models based on
our experience with large real-world
computations”
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MapReduce: Simplified Data Processing on Large Clusters

Jef

ey Dean and Sanj

Ghemawat

e gl enn, sujay@google com

Cioagle, I

Abstruct

MzpReduce it & programming medsl and an associ-
v g an gencrati g Luge

. und ¢ reduce tunction that merges all rtermedicte
values assocwted wath the same :niermacacte key. Maay
reel world tasks anc expressible in this modcl, as shown:
i wpe

Frograms writte in this funcional sty
cally perallelizeg ard exeouted on a lurg,
modity macaincs. The rur-fime system lases cerc of te
dlerails of pratitic ta, seleduling
gram’s exccutio scross & set of mackines, haxcling me-
chine ‘ailures, und mansgng the required inter-macine
communication. This allows programmers withoul any
expencroe with purallel ard distntuted systems to e
ily utifiae the resources of a large Cistriouted sysiem.

Tt

O implnentation of MapReducs s on s Targe
cluster of comredity machines and is highly sceleble:
4 typ-cal MapReduce compuleticn processes mary ter-
of detn cn thousends of mochings. Prozrummers
m easy touse: hurdreds of MapReduce pro
g liave heen i et and upw il
send MapReduce jubs re exervied on Gougle's clusters

1 Introduction

Over the pus: five years, L3¢ outhors azd maty othess af
Geogl: heve implemerted hundrecs of specizl-purpose

fins thal wrcess lage
such as crawled documents, web request log
comoute various kiacs of desived dets, such as avert

indices, vonous reprasentaticns of the gruph stucture
of web documents, summarics of the numacr of pages

crewled pr host, e set af wos fi

OSDI 2004

given dey, €. Mos: susk compulaticns are cenespiu-
ally strughttorwerd, However, the mput dota 15 usually
lergc 2nd the computations heve 1o be disiributed acr
Tunieds o thowsals o7 wachines in oider o fivis

teme. The 'ssuzs uf how w par-
sllel:ze the computation, disxibue the data, 21 hacle
failuras conspire 1 cbseare e origina. sirple compu-
tation with large arounts of complex cace fo deal with
these issues.

As a reation 10 s comolexity, we desizred 2 new
abstraction that allows us lo exoruss the sirple compute
fioms e weas “ryi g 00 perfinm Tt ides the messy do-
tails of purallelization, “aul-wleranze, duts Cistribution
and load balanci in & library. Our abstraction i ir-
spired by the map und reduce primitives present - Lisp
and mimy other functiond languages. W realized that
most of our computations imo.ved

Ialize ‘args computations exsily end o use re-execution
@ toe primary ecchanie: £or ‘ual tlerenee,

The majoc conibutions of this work ane & sample and
powerful interface tha: enables sutomic para‘lelization
and distmbation o lerge seale compatations, sembinac
wih on mp.emertction of this mieziace thet cehieve:
kigh performence on large clusters of commodicy PCs

Scction 2 describes the basic programming modal and
gives severcl examgles. Secticn 3 descibes ar wmple
menation of -z MapRedu
cluster-has .
scribes sewral refizements of the progrmumicg mocel
that we Fave fous usefal, Sextion < has performance

measursments of our mmplamentaticn lor @ of
tasks. Sectior. 6 cxplores the use of Meg
Gragls e T

Jeffrey Dean and Sanjay Ghemawat




adoop

Open-source data storage and processing
platform by Apache

Hadoop: HDFS + Hadoop MapReduce +
HBase (open source)

Named by Doug Cutting in 2006 (at Yahoo!),
after his son's toy elephant
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Features

* Fault-tolerant

* High throughput

« Supports arge data sets

« Streaming access to file system data
- Based on commodity hardware
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Comparison with

Data Size
Access
Updates
Structure
Integrity

Scaling

RDBMS

Traditional RDBMS
Gigabytes (Terabytes)
Interactive and Batch
Read / Write many times
Static Schema

High

Nonlinear

Query Response Can be near immmediate

Time
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Hadoop / MapReduce

Petabytes (Hexabytes)

Batch — NOT Interactive

Write once, Read many times

Dynamic Schema

Low

Linear

Has latency (due to batch
processing)




Hadoop

« HDFS + Map/Reduce allows programmers to stop thinking abq
* Where to locate files
* How to divide computation
« How to manage errors and data loss

* Provides:
- Redundant, Fault-tolerant data storage
 Parallel computation framework
+ Job coordination
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<3> HDFS Architecture
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Characteristics

- Scalability to large data volumes:

« Scanning 100 TB on 1 node in a speed of 50 MB/s will take 24 days
« Scan on 1000-node cluster will take 35 minutes
« Cost-efficiency:
- Commodity nodes (cheap, but unreliable)
«  Commodity network (low bandwidth)
+ Automatic fault-tolerance (fewer admins)

- Easy to use (fewer programmers)

'."H Data Science in the Wild, Spring 2019




Typical Hadoop Cluster

Rack 1 Rack 2 Rack 3

A Picture of Yahoo's Hadoop Cluster
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adoop Cluster Architecture

Core Switch

Rack Switch Rack Switch

ey
EOSG | one
0ae I
Node Node

* 1000-4000 nodes in cluster
« 1-10 Gbps bandwidth in rack, 10-40 Glbps out of rack

- Node specs (at Facebook): 8-16 cores, 32 GB RAM, 8x1.5 TB disks (no
raid)
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Fault tolerance

- A HDFS instance may consist of thousands of
server machines, each storing part of the file
system’s data

« S0, failure is the norm rather than exception

* There is always some component that is non-
functional.

- Fault detection and quick, automatic recovery
from them is a core architectural goal of HDFS
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Map/Reduce: Processing Model

Input Map Shuffle & Sort Reduce Output
B the, 1 B
& quick brown, 1 .
fox, 1 rown,
rown fox % X , : fox, 2
how, 1
now, 1
the, 3
the fox ate p ~~
the mouse B
ate, 1
cow, 1
G e mouse, 1
brown cow quick, 1

Q
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File Management

. Files split into 64-128MB blocks =
* Blocks replicated across several data-nodes (the default ;
replication factor is 3) o

- DataNodes: serves read, write requests, performs S
block creation, deletion, and replication upon o WE
Instruction from Namenode

\
. . k
* Name-nodes stores metadata (file names, locations, etc) \’

« Servers that manages the file system namespace patanodes
and regulates access to files by clients

« Optimized for large files, sequential reads

Q
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Name Nodes

* Fslmage: The filesystem namespace including mapping of blocks to
files and file system properties is stored in a file FsImage. Stored in

Namenode’s local filesystem.

- EditLog: Namenode uses a transaction log called the to record every
change that occurs to the filesystem meta data:

- Creating a new file
« Change replication factor of a file
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Example

/9, Metadata(Name, replicas..)

Metadata ops | Namenode | (homeffooidatas... .
Block ops
Datanodes
_feplication TN
Blocks
\ J
| |
Rack1 Write Rack?
Client
e B. RAMAMURTHY

Q
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Name Space

 Hierarchical file system
- Standard OS operations such as: create, remove, move, rename etc.
- Namenode maintains the file system

* Any meta information changes to the file system recorded by the
Namenode

« An application can specity the number of replicas of the file needed:
replication factor of the file. This information is stored in the Namenode.
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Replication

File.txt Client

- HDFS is designed to store very large files across

machines in a large cluster / \\

» Replication factor is usually 3 BT [:\};_!U I

- Each file is a sequence of blocks "2 oata Node 1 " oataote x| | | oaa lode 2 sk

* Namenode determines the rack ID for each go/ iy [E LA
DataNode e = o

- Replicas are placed: one on a node in a local rack, e Racks Racks

one on a different node in the local rack and one on
a node in a different rack

» Replica selection for READ operation: HDFS tries to
minimize the bandwidth consumption and latency
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DataNode Failure

« A network partition can cause a subset of Datanodes to lose connectivity
with the Namenode

* Namenode detects this condition by the albbsence of a Heartbeat message

- Namenode marks Datanodes without Hearbeat and does not send any |10
requests to them

« Any data registered to the failed Datanode is not available to the HDFS

 Also the death of a Datanode may cause replication factor of some of the
blocks to fall below their specified value

* Which triggers re-replication
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Other Tasks

» Cluster Rebalancing: moving blocks and creating
new replicas if there is high demand for the file

* Data Integrity: Using checksum mechanisms,

HDFS can check if the data is corrupt and fetch it
from another block

* Metadata Disk Failure:
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from hdfs import InsecureClient

FDB/tf1()r1 from hdfs import Config

(:;”(Br]t client InsecureClient('http://host:port', user=‘ann’)

client - Config().get_client('dev")
Example

# Loading a file in memory.
with client.read('features') as reader:
features = reader.read()

# Directly deserializing a JSON object.

with client.read('model.json', encoding='utf-8') as reader:
from json import load
model = load(reader)

# Stream a file.
with client.read('features', chunk _size=8096) as reader:
for chunk in reader:
pass

# Writing part of a file.
with open('samples') as reader, client.write('samples') as writer:
for line in reader:
if line.startswith('-"):
writer.write(line)

https://hdfscli.readthedocs.io/en/latest/quickstart.ntml#configuration

Data Science in the Wild, Spring 2019



# Retrieving a file or folder content summary.

EXplOrlng the FS content = client.content('dat')

# Listing all files inside a directory.
fnames = client.list('dat"')

# Retrieving a file or folder status.
status = client.status('dat/features"')

# Renaming ("moving") a file.
client.rename('dat/features', 'features')

# Deleting a file or folder.
client.delete('dat', recursive=True)

# Download a file or folder locally.
client.download('dat', 'dat', n_threads=5)

# Get all files under a given folder (arbitrary depth).
import posixpath as psp
fpaths = [
psp.join(dpath, fname)
for dpath, _, fnames in client.walk('predictions')
for fname in fnames

]
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Summary

* Distributed file system (HDFS)

» Single namespace for entire cluster
» Replicates data 3x for fault-tolerance

 Name nodes know where files are, data nodes do the
Orocessing
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Programming Clusters

* Programming distributed systems is hard

* Therefore, programming Is restricted to a particular model:
* Programmers write data-parallel “map” and “reduce” functions
+ The system handles work distribution and failures

- Similar to map/filter/reduce in python and in Lisp
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Functional Programming and Parallelism

* Map:
- Map as a transformation over a dataset, specified by the function f

* |[f we make sure each transformation application happens in isolation
, then the application of f can be parallelizea

« Reduce:

* If we can group elements of the list, also the reduce phase can
proceed in parallel
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MapReduce Concept

« Example: Word count in a search index
* Typical code:
1. lterate over a set of record
2. Extract information from each set Map
3. Shuffle and sort intermediate results
4. Aggregate intermediate results
5. Generate final output

Reduce
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8Basic ldea
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Programming

Split

Block; .
Higher order

map(f(x)) functions

mapped data : List /

Shuffle and reduce(g(x, v), init)
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Combine




Q

Input

Deer Bear River
Car Car River
Deer Car Bear

:

The overall MapReduce word count process

oplitting

Deer Bear River |

o Car Car River

A Deer Car Bear
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Mapping Shutthng Reducing Final result

Bear, 1 o Bear, 2
Deer, 1 | o Bear 1
o Bear 1
River 1 o -
vl Car
o{ Car 1 o Car 3 o Bear 2
Car, 1 | ¢ Gt A Car, 3
o Car 1 Deer, 2
River. 1 | River, 2
N\ Deer, 1 o{ Deer, 2 -
wl Deer, 1 v
Deer, 1 :
> Car,1 | T — s
Bear, 1 | River, 1 »! River, 2
River, 1
Reduce

https://www.dezyre.com/hadoop-tutorial/hadoop-mapreduce-tutorial-




Map Phase

 Given a list, map takes as an argument a function f(x) and applies it to
all element in a list

- For example: map (countWords(“what’s up?” )) will produces output: 2
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Shuffle and Sort

1. After mapping, the output is partitioned
by key

2. Shuffle: the framework fetches the
relevant partition of the output of all the
mappers to the reducer

3. Sort: the framework sorts mapper
output by keys

Map

Shuffle Sort

Reduce
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Reduce Phase

+ Given a list, reduce takes as arguments a function g(x,y) and an initial
value (an accumulator)

g is first applied to the initial value and the first item in the list

« The result is stored In an intermediate variable, which is used as an
iInput together with the next item to a second application of g

* The process is repeated until all items in the list have been consumed
* A secondary sort might be operated on the output
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Example

Functions:
def f(x):
return count(re.split(x))

def g(c, y):
returnc + vy

init =0

x1 = Written and directed by
x2 = David Lynch this is

x3 = possibly the only
coming of age

Map(f(x))
4,4,6
Reduce(g(c, v))

14




Q

adoop Word Count in Python

Mapper.py: the quick

. brown fox
Import sys

for line in sys.stdin:
for word in line.split():
print(word.lower() + "\t" + 1)

the 1
quick 1
Reducer.py: ]Ez)r)(()\qvn
import sys
counts = {}

for line in sys.stdin:
word, count = line.split("\t")
dict[word] = dict.get(word, 0) + int(count)
for word, count in counts:
print(word.lower() + "\t" + 1)
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Change the
example to show

how running
reduce multiple
time looks
mouse
the 1
fox 1
1 ate 1
the 1
mouse 1
the 3
quick 1
brown 1
fox 2
ate 1
mouse 1




Search

* Input: (lineNumber, line) records
- Qutput: lines matching a given pattern

* Map:

- if(line matches pattern):
output(line)

* Reduce: identity function
— Alternative: no reducer (map-only job)
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Sort

- |Input: (key, value) records
- Output: same records, sorted by key

ant, bee

o B AV
- Map: identity function aardvark
- Reduce: identify function L pee
elephant
. . s . \[N-Z]
« Trick: Pick partItIOnlng 2?;3;]’::? i(:;quéoig
function p such that L o e
k1 < k2 => p(k1) < p(k2) \ikste zebra
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Inverted Index

Input: (filename, text) records
Output: list of files containing each word

Map:
foreach word in text.split():
output(word, filename)

Combine: unique filenames for each word

Reduce:

def reduce(word, filenames):
output(word, sort(flenames))
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Inverted Index Example

4mlet.txt

to, hamlet.txt

to be or ‘be, hamlet.txt A
not to be or, hamlet.txt \ afraid, (12th.txt)
not, hamlet.txt be, (12th.txt, hamlet.txt)

greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)

Abth ixt be, 12th.txt or, (hamlet.txt)

o ey not, 12thtxt — ~ " {o, (hamlet.txt)
_ ——afraid, 12th.txt

afraid of of, 12th.txt

greatness greatness, 12th.txt
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Numerical Integration

Input: (start, end) records for sub-ranges to integrate
— Can implement using custom InputFormat

Output: integral of f(x) over entire range

- Map:
def map(start, end):
sum=0
for(x = start; x < end; x += step):
sum += f(x) * step
output(“”, sum)

Reduce:
def reduce(key, values):
output(key, sum(values))
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What does MapReduce Environment do”

Handles scheduling

Assigns workers to map and reduce tasks

- Handles synchronization: Gathers, sorts, and shuffles intermediate data
- Handles errors and faults

 Detects worker failures and restarts
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MapReduce Execution Details

« Mappers preferentially scheduled on same node or same rack as their
iInput block

« Minimize network use to improve performance

* Mappers save outputs to local disk before serving to reducers
- Allows recovery if a reducer crashes
* Allows running more reducers than # of nodes
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Fault Tolerance in MapReduce

* |f a task crashes:
« Retry on another node
« OK for a map because it had no dependencies
» OK for reduce because map outputs are on disk
* [f the same task repeatedly fails, fail the job or ignore that input block
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Fault Tolerance in MapReduce

* If a node crashes:
« Relaunch its current tasks on other nodes
* Relaunch any maps the node previously ran

* Necessary because their output files were lost along with the
crashed node

* If a task is going slowly:
« Launch second copy of task on another node
* Take the output of whichever copy finishes first, and kill the other one
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Summary

* MapReduce allows a restricted data-parallel programming model,
MapReduce can control job execution in useful ways:

- Automatic division of job into tasks

« Placement of computation near data
 Load balancing

« Recovery from failures & stragglers
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* The challenges of big data
* HDFS

* MapReduce
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