
Data Science in the Wild, Spring 2019

Eran Toch

!1

Lecture 10: Distributed File Systems

Data Science in the Wild

Data Science in the Wild, Spring 2019

Agenda

!2

1.Big data
2.Hadoop and HDFS
3.HDFS Architecture
4.MapReduce
5. Intro to Spark

Data Science in the Wild, Spring 2019

<1> Big Data

!3

Data Science in the Wild, Spring 2019

What is Big Data?

• Managing data sets that are so large or complex that traditional data
processing applications are inadequate
• E.g., Relational Database Servers

• Challenging include storing, managing, processing, analyzing,
visualizing, understanding

!4

Data Science in the Wild, Spring 2019

The Scale of Big Data

!5

Data Science in the Wild, Spring 2019

Size

!6

Data Science in the Wild, Spring 2019

Data Complexity

• Multiple formats of storage:
• Structured data
• Semi-structured (XML, JSON)
• Text (Web)
• Pictures
• Video feed
• Genes
• …

!7

Data Science in the Wild, Spring 2019

Contemporary Data Warehouses

!8

Structured Data:
Hospitalizations
Drugs taken
Demographics

Semi-structure
data:
Hospitalizations
Drugs taken
Demographics

Rich media:
X pics
MRI

Sensor data:
App data
Step counters
Ubiqtious devices

Other:
Full genome
sequence

Data Science in the Wild, Spring 2019

Data Velocity

• Data is generated and processed extremely fast
• Decision-making is done by bots

• Online recommendations
• Pricing
• Ads

• Data is managed in the cloud (huge clusters)

!9

Data Science in the Wild, Spring 2019

Older and Newer Solutions

!10

Processing Node

Data Data Data

Parallelizing data has been
a solid solution for decades.
It required special super-
computers and dedicated
software

Manager

Processing
+ Data

Processing
+ Data

Processing
+ Data

But recently, parallelization
was made more ubiquitous,
using commodity servers
and open-source software

Data Science in the Wild, Spring 2019

Basic Idea: Parallelism

!11

1 2 -54 66 The Red Fox Jumped

• Find average
• Find median
• Is the third number positive?

• Search
• Count words
• Translate?

NYC LA Boston Chicago

• Find average income
• Find optimal route?

Data Science in the Wild, Spring 2019

Amdahl's law

• Optimally, the speedup from parallelization would be
linear, but very few parallel algorithms achieve optimal
speedup

• The potential speedup of an algorithm on a parallel
computing platform is given by Amdahl's law:

• Slatency is the potential speedup in latency of the
execution of the whole task;

• s is the speedup in latency of the execution of the
parallelizable part of the task;

• p is the percentage of the execution time of the
whole task concerning the parallelizable part of the
task before parallelization

• For example, if 90% of the program can be parallelized,
the theoretical maximum speedup using parallel
computing would be 10 times no matter how many
processors are used.

!12

Data Science in the Wild, Spring 2019

Summary

• Data is becoming big
• Large, complex, and fast
• Parallelization is the only solution we currently have

!13

Data Science in the Wild, Spring 2019

<2> HDFS - Hadoop
Distributed File Systems

!14

Data Science in the Wild, Spring 2019

Technological Architecture

!15

Hadoop Distributed File System (HDFS)

MapReduce / YARN

Storage

Processing

In Memory
Data

Data
Warehouse

NoSQL Scripting

Pig

Data Science in the Wild, Spring 2019

The History of Hadoop

• Based on research by Blelloch, Gorlatch
and others into simple distributed
operations

• Implemented of a distributed file system
by Google (2004)
• GFS + MapReduce + BigTable (closed code)
• “MapReduce can be considered a simplification

and distillation of some of these models based on
our experience with large real-world
computations”

!16

Jeffrey Dean and Sanjay Ghemawat

Data Science in the Wild, Spring 2019

Hadoop

• Open-source data storage and processing
platform by Apache

• Hadoop: HDFS + Hadoop MapReduce +
HBase（open source)

• Named by Doug Cutting in 2006 (at Yahoo!),
after his son's toy elephant

!17

Data Science in the Wild, Spring 2019

Features

• Fault-tolerant
• High throughput
• Supports arge data sets
• Streaming access to file system data
• Based on commodity hardware

!18

Data Science in the Wild, Spring 2019

Comparison with RDBMS

!19

Traditional RDBMS Hadoop / MapReduce

Data Size Gigabytes (Terabytes) Petabytes (Hexabytes)

Access Interactive and Batch Batch – NOT Interactive

Updates Read / Write many times Write once, Read many times

Structure Static Schema Dynamic Schema

Integrity High Low

Scaling Nonlinear Linear

Query Response
Time

Can be near immediate Has latency (due to batch
processing)

Data Science in the Wild, Spring 2019

Hadoop

• HDFS + Map/Reduce allows programmers to stop thinking about:
• Where to locate files
• How to divide computation
• How to manage errors and data loss

• Provides:
• Redundant, Fault-tolerant data storage
• Parallel computation framework
• Job coordination

!20

Data Science in the Wild, Spring 2019

<3> HDFS Architecture

!21

Data Science in the Wild, Spring 2019

Characteristics

• Scalability to large data volumes:
• Scanning 100 TB on 1 node in a speed of 50 MB/s will take 24 days
• Scan on 1000-node cluster will take 35 minutes

• Cost-efficiency:
• Commodity nodes (cheap, but unreliable)
• Commodity network (low bandwidth)
• Automatic fault-tolerance (fewer admins)
• Easy to use (fewer programmers)

!22

Data Science in the Wild, Spring 2019

Typical Hadoop Cluster

!23

Data Science in the Wild, Spring 2019

Hadoop Cluster Architecture

• 1000-4000 nodes in cluster
• 1-10 Gbps bandwidth in rack, 10-40 Gbps out of rack
• Node specs (at Facebook): 8-16 cores, 32 GB RAM, 8×1.5 TB disks (no

raid)
!24

Core Switch

Rack Switch Rack Switch

Node
Node
Node

Node
Node
Node

Data Science in the Wild, Spring 2019

Fault tolerance

• A HDFS instance may consist of thousands of
server machines, each storing part of the file
system’s data

• So, failure is the norm rather than exception
• There is always some component that is non-

functional.
• Fault detection and quick, automatic recovery

from them is a core architectural goal of HDFS

!25

Data Science in the Wild, Spring 2019

Map/Reduce: Processing Model

!26

the quick
brown fox

the fox ate
the mouse

how now
brown cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1
mouse, 1
quick, 1

the, 1
brown, 1
fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1
brown, 1

ate, 1
mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Data Science in the Wild, Spring 2019

File Management

• Files split into 64-128MB blocks
• Blocks replicated across several data-nodes (the default

replication factor is 3)
• DataNodes: serves read, write requests, performs

block creation, deletion, and replication upon
instruction from Namenode

• Name-nodes stores metadata (file names, locations, etc)
• Servers that manages the file system namespace

and regulates access to files by clients
• Optimized for large files, sequential reads

!27

Namenode

Datanodes

1
2
3
4

1
2
4

2
1
3

1
4
3

3
2
4

File1

Data Science in the Wild, Spring 2019

Name Nodes

• FsImage: The filesystem namespace including mapping of blocks to
files and file system properties is stored in a file FsImage. Stored in
Namenode’s local filesystem.

• EditLog: Namenode uses a transaction log called the to record every
change that occurs to the filesystem meta data:
• Creating a new file
• Change replication factor of a file

!28

Data Science in the Wild, Spring 2019

Example

!29

Namenode

Breplication

Rack1 Rack2

Client

Blocks

Datanodes Datanodes

Client

Write

Read

Metadata ops
Metadata(Name, replicas..)

(/home/foo/data,6. ..

Block ops

B. RAMAMURTHY

Data Science in the Wild, Spring 2019

Name Space

• Hierarchical file system
• Standard OS operations such as: create, remove, move, rename etc.
• Namenode maintains the file system
• Any meta information changes to the file system recorded by the

Namenode
• An application can specify the number of replicas of the file needed:

replication factor of the file. This information is stored in the Namenode.

!30

Data Science in the Wild, Spring 2019

Replication

• HDFS is designed to store very large files across
machines in a large cluster

• Replication factor is usually 3
• Each file is a sequence of blocks
• Namenode determines the rack ID for each

DataNode
• Replicas are placed: one on a node in a local rack,

one on a different node in the local rack and one on
a node in a different rack

• Replica selection for READ operation: HDFS tries to
minimize the bandwidth consumption and latency

!31

Data Science in the Wild, Spring 2019

DataNode Failure

• A network partition can cause a subset of Datanodes to lose connectivity
with the Namenode

• Namenode detects this condition by the absence of a Heartbeat message
• Namenode marks Datanodes without Hearbeat and does not send any IO

requests to them
• Any data registered to the failed Datanode is not available to the HDFS
• Also the death of a Datanode may cause replication factor of some of the

blocks to fall below their specified value
• Which triggers re-replication

!32

Data Science in the Wild, Spring 2019

Other Tasks

• Cluster Rebalancing: moving blocks and creating
new replicas if there is high demand for the file

• Data Integrity: Using checksum mechanisms,
HDFS can check if the data is corrupt and fetch it
from another block

• Metadata Disk Failure:

!33

Data Science in the Wild, Spring 2019

Python
Client
Example

from hdfs import InsecureClient
from hdfs import Config

client = InsecureClient('http://host:port', user=‘ann’)
client = Config().get_client('dev')

Loading a file in memory.
with client.read('features') as reader:
 features = reader.read()

Directly deserializing a JSON object.
with client.read('model.json', encoding='utf-8') as reader:
 from json import load
 model = load(reader)

Stream a file.
with client.read('features', chunk_size=8096) as reader:
 for chunk in reader:
 pass

Writing part of a file.
with open('samples') as reader, client.write('samples') as writer:
 for line in reader:
 if line.startswith('-'):
 writer.write(line)

!34

https://hdfscli.readthedocs.io/en/latest/quickstart.html#configuration

Data Science in the Wild, Spring 2019

Exploring the FS
Retrieving a file or folder content summary.
content = client.content('dat')

Listing all files inside a directory.
fnames = client.list('dat')

Retrieving a file or folder status.
status = client.status('dat/features')

Renaming ("moving") a file.
client.rename('dat/features', 'features')

Deleting a file or folder.
client.delete('dat', recursive=True)

Download a file or folder locally.
client.download('dat', 'dat', n_threads=5)

Get all files under a given folder (arbitrary depth).
import posixpath as psp
fpaths = [
 psp.join(dpath, fname)
 for dpath, _, fnames in client.walk('predictions')
 for fname in fnames
]

!35

Data Science in the Wild, Spring 2019

Summary

• Distributed file system (HDFS)
• Single namespace for entire cluster
• Replicates data 3x for fault-tolerance
• Name nodes know where files are, data nodes do the

processing

!36

Data Science in the Wild, Spring 2019

<4> Map/Reduce

!37

Data Science in the Wild, Spring 2019

Programming Clusters

• Programming distributed systems is hard
• Therefore, programming is restricted to a particular model:

• Programmers write data-parallel “map” and “reduce” functions
• The system handles work distribution and failures

• Similar to map/filter/reduce in python and in Lisp

!38

Data Science in the Wild, Spring 2019

Functional Programming and Parallelism

• Map:
• Map as a transformation over a dataset, specified by the function f
• If we make sure each transformation application happens in isolation

, then the application of f can be parallelized
• Reduce:

• If we can group elements of the list, also the reduce phase can
proceed in parallel

!39

Data Science in the Wild, Spring 2019

MapReduce Concept

• Example: Word count in a search index
• Typical code:

1. Iterate over a set of record
2. Extract information from each set
3. Shuffle and sort intermediate results
4. Aggregate intermediate results
5. Generate final output

!40

Map

Reduce

Data Science in the Wild, Spring 2019

Basic Idea

!41

Data

Block1 Block2 Blockn

Worker Worker Worker

ResultnResult2Result1

Result

Data Science in the Wild, Spring 2019

Programming
Model

!42

Data

Blocki

Worker

r2

Result

Data

map(f(x))

mapped data : List

Shuffle and reduce(g(x, v), init)

aggregate date

Higher order
functions

init

Split

Combine

Data Science in the Wild, Spring 2019 !43

https://www.dezyre.com/hadoop-tutorial/hadoop-mapreduce-tutorial-

Data Science in the Wild, Spring 2019

Map Phase

• Given a list, map takes as an argument a function f(x) and applies it to
all element in a list

• For example: map (countWords(“what’s up?”)) will produces output: 2

!44

Data Science in the Wild, Spring 2019

Shuffle and Sort

1. After mapping, the output is partitioned
by key

2. Shuffle: the framework fetches the
relevant partition of the output of all the
mappers to the reducer

3. Sort: the framework sorts mapper
output by keys

!45

Data

Map

Sort

Reduce

Result

Shuffle

Data Science in the Wild, Spring 2019

Reduce Phase

• Given a list, reduce takes as arguments a function g(x,y) and an initial
value (an accumulator)

• g is first applied to the initial value and the first item in the list
• The result is stored in an intermediate variable, which is used as an

input together with the next item to a second application of g
• The process is repeated until all items in the list have been consumed
• A secondary sort might be operated on the output

!46

Data Science in the Wild, Spring 2019

Example

Functions:
def f(x):
 return count(re.split(x))

def g(c, y):
 return c + y

init = 0

!47

x1 = Written and directed by

x2 = David Lynch this is

x3 = possibly the only  
coming of age

Map(f(x))

4, 4, 6

Reduce(g(c, y))

14

Data Science in the Wild, Spring 2019

Hadoop Word Count in Python

import sys
for line in sys.stdin:
 for word in line.split():
 print(word.lower() + "\t" + 1)

!48

import sys
counts = {}
for line in sys.stdin:
 word, count = line.split("\t")
 dict[word] = dict.get(word, 0) + int(count)
for word, count in counts:
 print(word.lower() + "\t" + 1)

Mapper.py:

Reducer.py:

the quick
brown fox

the 3
quick 1
brown 1
fox 2
ate 1
mouse 1

the 1
quick 1
brown 1
fox 1

the 1
fox 1
ate 1
the 1
mouse 1

the fox ate the
mouse

Change the
example to show
how running
reduce multiple
time looks

Data Science in the Wild, Spring 2019

Search

• Input: (lineNumber, line) records
• Output: lines matching a given pattern

• Map:
• if(line matches pattern): 

 output(line)

• Reduce: identity function
– Alternative: no reducer (map-only job)

!49

Data Science in the Wild, Spring 2019

Sort

• Input: (key, value) records
• Output: same records, sorted by key

• Map: identity function
• Reduce: identify function

• Trick: Pick partitioning  
function p such that 
k1 < k2 => p(k1) < p(k2)

!50

pig
sheep
yak
zebra

aardvark
ant
bee
cow
elephant

Map

Map

Map

Reduce

Reduce

ant, bee

zebra

aardvark,
elephant

cow

pig

sheep, yak

[A-M]

[N-Z]

Data Science in the Wild, Spring 2019

Inverted Index

• Input: (filename, text) records
• Output: list of files containing each word

• Map:  
 foreach word in text.split(): 
 output(word, filename)

• Combine: unique filenames for each word

• Reduce: 
 def reduce(word, filenames):  
 output(word, sort(filenames))

!51

Data Science in the Wild, Spring 2019

Inverted Index Example

!52

afraid, (12th.txt)
be, (12th.txt, hamlet.txt)
greatness, (12th.txt)
not, (12th.txt, hamlet.txt)
of, (12th.txt)
or, (hamlet.txt)
to, (hamlet.txt)

to be or
not to be

hamlet.txt

be not
afraid of
greatness

12th.txt

to, hamlet.txt
be, hamlet.txt
or, hamlet.txt
not, hamlet.txt

be, 12th.txt
not, 12th.txt
afraid, 12th.txt
of, 12th.txt
greatness, 12th.txt

Data Science in the Wild, Spring 2019

Numerical Integration

• Input: (start, end) records for sub-ranges to integrate
– Can implement using custom InputFormat

• Output: integral of f(x) over entire range

• Map:
def map(start, end):

sum = 0  
for(x = start; x < end; x += step): 
 sum += f(x) * step  
 output(“”, sum)

• Reduce: 
def reduce(key, values):  
 output(key, sum(values))

!53

Data Science in the Wild, Spring 2019

What does MapReduce Environment do?

• Handles scheduling
• Assigns workers to map and reduce tasks
• Handles synchronization: Gathers, sorts, and shuffles intermediate data
• Handles errors and faults
• Detects worker failures and restarts

!54

Data Science in the Wild, Spring 2019

MapReduce Execution Details

• Mappers preferentially scheduled on same node or same rack as their
input block
• Minimize network use to improve performance

• Mappers save outputs to local disk before serving to reducers
• Allows recovery if a reducer crashes
• Allows running more reducers than # of nodes

!55

Data Science in the Wild, Spring 2019

Fault Tolerance in MapReduce

• If a task crashes:
• Retry on another node
• OK for a map because it had no dependencies
• OK for reduce because map outputs are on disk

• If the same task repeatedly fails, fail the job or ignore that input block

!56

Data Science in the Wild, Spring 2019

Fault Tolerance in MapReduce

• If a node crashes:
• Relaunch its current tasks on other nodes
• Relaunch any maps the node previously ran
• Necessary because their output files were lost along with the

crashed node
• If a task is going slowly:

• Launch second copy of task on another node
• Take the output of whichever copy finishes first, and kill the other one

!57

Data Science in the Wild, Spring 2019

Summary

• MapReduce allows a restricted data-parallel programming model,
MapReduce can control job execution in useful ways:
• Automatic division of job into tasks
• Placement of computation near data
• Load balancing
• Recovery from failures & stragglers

!58

Data Science in the Wild, Spring 2019

Summary

• The challenges of big data

• HDFS

• MapReduce

!59

