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The Scale of Big Data

Big Data = Transactions + Interactions + Observations

Petabytes

Terabytes

Gigabytes

Megabytes

Sensors / RFID / Devices

Mobile Web
User Click Stream
Web logs WEB
Offer history

CRM

Segmentation

Offer details
ERP

Purchase detail
Purchase record Support Contacts

Payment record

Increasing Data Variety and Comple

Customer Touches

BIG DATA

Sentiment

A/B testing
Dynamic Pricing

Affiliate Networks
Search Marketing
Behavioral Targeting

Dynamic Funnels

User Generated Content
Social Interactions & Feeds

Spatial & GPS Coordinates

External Demographics

Business Data Feeds

HD Video, Audio, Images
Speech to Text

Product/Service Logs

SMS/MMS
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1.Spark
2.Spark DataFrames

3.Spark SQL

4.Machine Learning on Spark
5. ML Pipelines
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Technological Architecture

In Memory Data Scripting
Data Flow Warehouse %
|~ e
<
5 é
_ MapReduce / YARN
Processing
Storage

Hadoop Distributed File System (HDFS)

i liEEEEm
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Motivation

 Acyclic data flow Is a powerful abstraction,
but is not efficient for applications that

repeatedly reuse a working set of data: S g a K
- [terative algorithms (many in machine learning) p r ;
- Interactive data mining tools (R, Excel, Python)

- Spark makes working sets a first-class
concept to efficiently support these apps
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Istory

National Science Foundation
a Expeditions in Computing

ABOUT PEOPLE PAPERS PROJECTS SOFTWARE BLOG SPONSORS PHOTOS

Login

AMP. MACHINES PEOPLE

Machine learning (ML) turns data into information and knowledge

While it is useful to view ML as a toolbox that can be deployec

data-centric problems, our long-term goal is more ambitious—we are

developing ML as a full-fledged engineering discipline.

Events More » Blog More »

Generating Data M
Systems, Th 11/10
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Logistic Regression Performance

4000
127 s / iteration
0 3000 /
e
i= w Hadoop
2 2000 W Spark
(e
-
S | \
T 1000 N
first iteration 174 s
further iterations 6 s
O J

1 5 10 20 30

Number of lterations
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Spark

* Provides distributed memory abstractions for clusters to support apps
with working sets

» Retain the attractive properties of MapReduce:
- Fault tolerance (for crashes & stragglers)
 Data locality
« Scalability
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Languages

« Scala: Spark is primarily written in Scala, making it Spark’s “default”
language. This book will include Scala code examples wherever
relevant.

- Java
* Python
« SQL: Spark supports ANSI SQL 2003 standard

« R: Spark has two commonly used R libraries, one as a part of Spark
core (SparkR) and another as an R community driven package (sparklyr
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Running Spark

- Self Hosted: You can set up a cluster yourself using bare metal
machines or virtual machines

» Cloud Providers: Most cloud providers offer Spark clusters: AWS has
EMR and GCP has DataProc.

 Vendor Solutions: Companies including Databricks and Cloudera
provide Spark solutions
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Environments

J u pyter UntitledS Last Chuckpoin. 4 mitules sy (aulusaved) "

IO 80Just logging level use SC.sSetLogLeveli™INKrUT™)

wWelcome to F E o

.'—__— - E 4+ ¥ T B 2 ¢ N B C cok v = Cellloonar & O

Vit aad Vavadod FoN version 1.6.1
/1! In [11]: dmport [indspark
firdspark.init()
Using Scala version 2.18.5 (Java Hot?potllwl 64-8it Server VM, Java 1.8.98_121) import pyspark
Type in expressions to have them evaluated. import random
Type thelp for more information.
17/07/26 22:11:83 WARN SparkConf: sc - pysperk.SparkContext(zppNane-"P1")
ey d o s et et - num_samples — 10006839
SPARK_WORKER_INSTANCES was detected (set to '2'). s
This 1is deprecated in Spark 1.8+. def inside(p):
x, y = random.random{}, random.r~ardom)

X : R =
Please instead use: returm a*x + y*y < 1

Jspark-submit with num-@xecutors to specify the number of executors ceunt - sc.parallelize(rargz(0, num_samples)).ftilter(inside).count()
5 SPARK_EXECUTOR_INSTANCES
rk.executor.instances to configure the number of instances in the spark config.

Or s
pi = 4 = count / num samples

p"l\t(p'_'n
Spark context available as sc. sc.slopi)
17/07/26 22:11:05 WARN Connection: BoneCP specified but not present in CLASSPATH {(or one of depend i 3.14187536
17/07/26 22:11:05 WARN Connection: BoneCP specified but not present in CLASSPATH {(or one of dependencies)
1 7/26 22:11:07 WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verifi In 19
17/87/26 22:11:87 WARN ObjectStore: Failed to get database defsult, returning NoSuchObjectException
17/87/26 22:11:88 WARN Connection: BoneCP specified but not present in CLASSPATH {(or one of ﬁ'ﬁC‘E"CE"Cii‘Sl

17/87/26 22:11:98 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
SQL context available as sqlContext.

scala>

Spark Shell Jupyter Integration

https://medium.com/@yaijieli/installing-spark-pyspark-on-mac-and-fix-of-some-common-errors-355a9050f735
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https://medium.com/@yajieli/installing-spark-pyspark-on-mac-and-fix-of-some-common-errors-355a9050f735

DataBricks

& Create Cluster

databricks
) 0 Workers: 0.0 GB Memory, 0 Coras. 0 DBU
Y C o Cancel Create Cluster : b
NC/\/\/ ‘Ubtor - 1 Driver: 6.0 GB Memory, 0.88 Cores, 1 DBU @

Cluster Name

A

Home

TeachingSpark

=

Databricks Runtime Version @
Workspace

Runtime: 5.2 (Scala 2.11, Spark 2.4.0)

Python Version @

3 N The default Python version for clusters was changed

Instance
Free 6GB Memory: As a Community Edition user, your cluster will automatically terminate after an idle period of two hours.

For more configuration options, please upgrade your Databricks subscription.

Clusters .
Instances Spark

Availability Zone @

4p»

Databric
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https://community.cloud.databricks.com/

Workspace

0]

Recents

—]
-

BEIE]

i

Q

Search

‘ Clusters - Databricks Commur X +

C @ https://community.cloud.databricks.com/?0=433

® QuickStart @ Edit €3 Clone x Delete

Configuration Libraries Event Log Spark Ul Driver Logs Metrics

Spark Joos "

User: root

Total Uptime:
Scheduling Mode: FAIR
Completed Jobs: 34

P Event Timeline

Completeo Jobs (34)

Job Id (Job Group) ~

33
(4232344823428496786_6974291540507507841_c318521f77054a6bbbabcd3bf08029a7)

32
(4232344823428496786_6974291540507507841_¢318521f77054a6bbbabcd3bf08029a7)

31
(4232344823428496786_6974291640507507841_c318521f77054a6bbbabcd3bf08029a7)

30

[ADANRAAQDIWADAAQARTAR RAT7ANQIRANENTENT7QA1 A1 ARD1¥77NEAABhKRhalAARINQNDAA7N
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Description

# MLlib imports from pyspark.ml.feature import ...

count at LinearRegression.scala: 952

# MLlib imports from pyspark.ml.feature import ...

sum at RegressionMetrics.scala:71

# MLlib imports from pyspark.ml.feature import ...

treeAggregate at RegressionMetrics.scala:57

# MLlib imports from pyspark.ml.feature import ...

tranlhAnvanata at \lainkhtadl asactQaAiiarae caala1NBE

Submitted

2019/03/19
22:23:31

2019/03/19
22:23:30

2019/03/19
22:23:29

2019/03/19

(oL Rbs Lo B} +)




® © ® @ skaters - Databricks Communi X 4

& C @ https://community.cloud.databricks.com/?0=4339395183095235#notebook/1433844791030199/co... o w (O m e O v @
Skaters pycn 0O ? @
databricks . . .
& Attached: @ QuickStart R File = Eal View: Code » ® Run All 2 Clear v 2] @ Publish ®, Comments ‘D Revision history
P il v — X

display(spark.sql("""
select cast(substring(game_id, 1, 4) || '-'
|| substring(game_id, 5, 2) || '-01' as Date) as month
, sum(goals)/count(distinct game_id) as goals_per_goal
from stats

Recents group by 1
order by 1
nnn
- ))
» (1) Spark Jobs

i

0.00

2012-02-01 2013-02-01 2014-02-01 2015-02-01 2016-02-01 2017-02-01
month

goals_per_goal
Now s @
(=] o o o (=]

o

= al +  PotOptons.. &
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Spark Structure

Structured Advanced Ecosystem
Streaming Analytics

Structured APIs

DataFrames

Low level APIs

Distributed Variables

https://pages.databricks.com/gentle-intro-spark.html
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Spark Programming

 Resilient Distributed Datasets (RDDs)
* Phased out
 DataFrames
« Spark SQL . DataFrome R
DataFrame Python
DataFrame Scala

RDD Python
RDD Scala

0 2 4 6 8 10

Time for aggregation benchmark (s)
gdatabricks

https://towardsdatascience.com/sqgl-at-scale-with-apache-spark-sqgl-and-dataframes-concepts-architecture-and-examples-c567853a702f
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<2> Spark DataFrames
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Data Frames

- A DataFrame is the most common Structured APl and simply
represents a table of data with rows and columns

* The list of columns and the types in those columns the schema
- A Spark DataFrame can be parallelized across thousands of computers

player_id team_ic timeOnlce

ass goa hits pov pov ac
2012030221 8471958 3 1925 0 0 3 0 0 0 0
2012030221 8471339 3 1597 1 0 2 3 0 0 0 0
2012030221 8471873 3 1695 0 0 1 2 0 0 0 0
2012030221 8473432 3 957 0 0 3 5 0 0 2 0
2012030221 8470192 3 859 0 0 1 0 0 0 2 0
2012030221 8474151 3 1919 0 1 3 5 0 0 0 0
2012030221 8475184 3 697 0 0 0 3 0 0 0 0
2012030221 8475186 3 933 0 0 1 0 0 0 2 0
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Partitions

DataFrame with 4 partitions

- To allow every executor to perform work in R T T
parallel, Spark breaks up the data into chunks, e« jme e o Lien| o e | o] o s |
called partitions O o e o il I ol bl

Qe . . | | i | ;

* A partition is a collection of rows that sit onone T T T

physical machine in our cluster

* Programming with Dataframes means that we
specify high-level transformations of data anad
Spark determines how this work will actually
execute on the cluster.

 Lower level APIs do exist (via the Resilient
Distributed Datasets interface)
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Loading Data

file_location = "/FileStore/tables/game_skater_stats.csv'
df = spark.read.format("csv").option("inferSchema”,

True).option(*header”, True).load(file_location)
display(df)

» & df: pyspark.sql.dataframe.DataFrame = [game id: integer, player id: integer ... 20 more fields]
player_id team_ic timeOnlce assists goals sho hits powerPlayGoals powerPlayAssists penaltyMinutes

2012030221 8471958 3 1925 0 0 0 3 0 0 0
2012030221 8471339 3 1597 1 0 2 3 0 0 0
2012030221 8471873 3 1695 0 0 1 2 0 0 0
2012030221 8473432 3 957 0 0 3 5 0 0 2
2012030221 8470192 3 859 0 0 1 0 0 0 2
2012030221 8474151 3 1919 0 1 3 5 0 0 0
2012030221 8475184 3 697 0 0 0 3 0 0 0
2012030221 8475186 3 933 0 0 1 0 0 0 2

ANANNNNNNA  QATA4 70 n 4400

g

B A - v

https://towardsdatascience.com/a-brief-introduction-to-pyspark-ff4284701873
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Ways to Read Data

« Reading from CSV is done in an “eager” mode: the data is immediately
oaded to the memory

« Lazy initialization is generally preferred with Spark
* |t Is possible with parguet files

df = spark.read .load(“s3a://my_bucket/game_skater_stats/*.parquet")
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Writing Data

* Writing to Parquet:

# DBFS (Parquet)
df.write.save(‘/FileStore/parquet/game_stats', format='parquet"')

# S3 (Parquet)
df.write.parquet("s3a://my_bucket/game_stats", mode=“overwrite")

* Writing to CSV:

# DBFS (CSV)

df.write.save('/FileStore/parquet/game_stats.csv', format='csv')

# S3 (CSV)

df.coalesce(1l).write.format("com.databricks.spark.csv'")
.option("header", "true").save("s3a://my_bucket/

game_sstats.csv'")

Data Science in the Wild, Spring 2019
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Schemas _

| -— game_id: integer (nullable = true)
| -— player_id: integer (nullable = true)
| -— team_id: integer (nullable = true)
| -— timeOnIce: integer (nullable = true)
| -— assists: integer (nullable = true)

- df.printSchema) .

| -— shots: integer (nullable = true)

goals: integer (nullable = true)

. |-- hits: dinteger (nullable = true)
| -— powerPlayGoals: 1integer (nullable = true)
| -—— powerPlayAssists: integer (nullable = true)
| -— penaltyMinutes: integer (nullable = true)
| -— faceOffWins: integer (nullable = true)
| -— faceoffTaken: integer (nullable = true)
| -— takeaways: integer (nullable = true)
| -- giveaways: integer (nullable = true)
| -— shortHandedGoals: 1integer (nullable = true)
| -— shortHandedAssists: integer (nullable = true)
| -— blocked: integer (nullable = true)
| -— plusMinus: 1integer (nullable = true)
| -— evenTimeOnIce: integer (nullable = true)
| -— shortHandedTimeOnIce: integer (nullable = true)
| -— powerPlayTimeOnIce: 1integer (nullable = true)
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Operations

unionDF = dfl.unionAll(df2)
display(unionDF)

df = unionDF.select(explode("employees") .alias("e"))
explodeDF = df.selectExpr("e.firstName", "e.lastName", "e.email", "e.salary")

filterDF = explodeDF.filter (explodeDF.firstName == "xiangrui").sort(explodeDF.lastName)
display(filterDF)

*Replace null values with -- using DataFrame Na function
nonNullDF = explodeDF.fillna("--")
display (nonNullDF)
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<4> Spark SQL
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Spark SQL

- SQL: Structure Query Language was oussrsso.
defined for relational databases owsrra e —

» Spark SQL is borrowed from HIVE’s o
implementation Of a |imited |anguage for edatabricks Time for aggregation benchmark (s)

Hadoop-based datasets

« Spark SQL provides a DataFrame APl that
can perform relational operations on both
external data sources and Spark’s built-in
distributed collections

https://towardsdatascience.com/sql-at-scale-with-apache-spark-sgl-and-dataframes-concepts-architecture-and-examples-c567853a702f
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Running SQL

« SQL runs as a “language inside language”
model spark.sgl("show databases")

» Databases and tables can be created
iIndependently or from DataFrames

df.createOrReplaceTempView("stats")
display(spark.sql ("""
select player_id, sum(1) as games, sum(goals) as goals
from stats
group by 1
order by 3 desc
limit 5
IIIIII))
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Commands

« Show databases « Select
« Show tables * Insert
« Create Database « Alter

» Alter Database

* Drop Database

 Create Table / View / Function
 Drop Table / View / Function
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Basic Data Structure

spark.sql("Create Database customer_data")
display(spark.sqgl("show databases"))

latabaseName
customer_data

default

display(spark.sqgl("show tables"))

default diamonds false

Dimonds

default

7N\

Stats

@ / Databases

customer_data

Tables
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Creating Tables

TEMPORARY

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db name.]table name . .
[ ] [ I 1db_ : - The created table will be available only

col namel col typel [COMMENT col commentl], ... : . . .
[(col_ ~typel | - ] )] in this session and will not be
USING datasource . .
persisted to the underlying metastore
[OPTIONS (keyl=vall, key2=val2, ...)]
[PARTITIONED BY (col_namel, col name2, ...)]
[CLUSTERED BY (col _name3, col name4, ...) INTO num_buckets BUCKETS]

[LOCATION path]

[COMMENT table_ comment]

[TBLPROPERTIES (keyl=vall, key2=val2, ...)]
[AS select statement]

CREATE TABLE boxes (width INT, length INT, height INT) USING CSV
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Example

CREATE TABLE rectangles
USING PARQUET
PARTITIONED BY (width)
CLUSTERED BY (length) INTO 8 buckets
AS SELECT * FROM boxes

USING <data source>
The file format to use for the table. One

of TEXT, CSV, JSON, JDBC, PARQUET, ORC, HIVE, DELTA, and LIBSVM

PARTITIONED BY
Partition the created table by the specified columns. A directory is

created for each partition.

CLUSTERED BY
Each partition in the created table will be split into a fixed number of

buckets by the specified columns. This is typically used with
partitioning to read and shuffle less data. Support for SORTED BY will be
added in a future version.

LOCATION
The created table uses the specified directory to store its data. This

clause automatically implies EXTERNAL.

AS <select_statement>

Populate the table with input data from the select statement. This may
not be specified with TEMPORARY TABLE or with a column list. To
specify it with TEMPORARY, use CREATE TEMPORARY VIEW instead.
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Select Example

df.createOrReplaceTempView("stats")
display(spark.sql ("""
select player_id, sum(1) as games, sum(goals) as goals
from stats
group by 1
order by 3 desc
limit 5
IIIIII))
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Select

Data Science in the Wild, Spring 2019

SELECT [hints, ...]
FROM relation[,
[lateral view[,
[WHERE boolean _expression]

[aggregation [HAVING boolean expression]]

[ALL|DISTINCT] named expression|[,
relation, ...]
lateral view, ...]]

[ORDER BY sort_expressions]

[CLUSTER BY expressions]

[DISTRIBUTE BY expressions]

[SORT BY sort _expressions]

[WINDOW named window[, WINDOW named window, ...]1]
[LIMIT num_rows]

named expression:
expression [AS alias]

relation:
| join_relation
| (table_name|query|relation)
VALUES (expressions) [,
[AS (column_name[, column_name,

[sample] [AS alias]
(expressions), ...]

1) ]

expressions:

expression[, expression, ...]

sort_expressions:

named expression,

expression [ASC|DESC][, expression [ASC|DESC],




Examples

SELECT * FROM boxes

SELECT width, length FROM boxes WHERE height=3

SELECT DISTINCT width, 1length FROM boxes WHERE height=3 LIMIT 2
SELECT * FROM boxes ORDER BY width

e DISTINCT: select all matching rows from the
relation then remove duplicate results.

¢ \WHERE: Filter rows by predicate.

e ORDER BY: Impose total ordering on a set of
expressions. Default sort direction is ascending.
You cannot use this
with SORT BY, CLUSTER BY,
or DISTRIBUTE BY.

e SORT BY: Impose ordering on a set of
expressions within each partition. Default sort
direction is ascending. You cannot use this
with ORDER BY or CLUSTER BY.

e | IMIT: Limit the number of rows returned.
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Casting and Functions

select cast(goals/shots * 50 as int)/50.0 as
Goals_per_shot
,sum(1) as Players

https://docs.databricks.com/spark/latest/spark-sqgl/la
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Examples

SELECT * FROM boxes
SELECT FROM boxes
SELECT * FROM boxes
SELECT * FROM boxes

*

DISTRIBUTE BY width SORT BY width
CLUSTER BY 1length

TABLESAMPLE (3 ROWS)

TABLESAMPLE (25 PERCENT)

HAVING
Filter grouped result by predicate.

DISTRIBUTE BY

Repartition rows in the relation based on a set of
expressions. Rows with the same expression values
will be hashed to the same worker. You cannot use this
with ORDER BY Or CLUSTER BY.

CLUSTER BY

Repartition rows in the relation based on a set of
expressions and sort the rows in ascending order
based on the expressions. In other words, this is a
shorthand for bISTRIBUTE BY and SORT BY where all
expressions are sorted in ascending order. You cannot
use this with ORDER BY, DISTRIBUTE BY, Orf SORT BY.
Sample

Sample the input data. This can be expressed in terms

of either a percentage (must be between 0 and 100) or
a fixed number of input rows.
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Joins

SELECT * FROM boxes INNER JOIN rectangles ON boxes.width = rectangles.width
SELECT * FROM boxes FULL OUTER JOIN rectangles USING (width, length)
SELECT * FROM boxes NATURAL JOIN rectangles

LEFT OUTER JOIN RIGHT OUTER
JOIN

INNER JOIN

FULL OUTER CARTESIAN
JOIN (CROSS) JOIN

Data Science in the Wild, Spring 2019

INNER JOIN
Select all rows from both relations
where there is match.

OUTER JOIN

Select all rows from both
relations, filling with null values on
the side that does not have a
match.

SEMI JOIN

Select only rows from the side of
the seMI JOIN where there is a
match. If one row matches
multiple rows, only the first match
is returned.

LEFT ANTI JOIN

Select only rows from the left side
that match no rows on the right
side.




Aggregation

Group by a set of expressions using one or more aggregate functions. Common built-in aggregate
functions include count, avg, min, max, and sum.

display(spark.sql("""
select cast(goals/shots *x 50 as int)/50.0 as Goals_per_shot
,sum(player_id) as Players

from (
select player_id, sum(shots) as shots, sum(goals) as goals
from Stats S0 w oo om Mr:i.ag_;;,e.-_l?-i'nM et
group by player_id
having goals >= 5

120

"
R
1]

)
group by Goals_per_shot
order by Goals_per_shot

i ) )
Spark also provides different ways to group by, with ROLLUP, CUBE, and GROUPING SETS
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Explain

 Provide detailed plan information about statement without actually
running it |
== Physical Plan ==
*(2) Filter (isnotnull(goals#1725L) && (goals#1725L >= 5))
+- *(2) HashAggregate(keys=[player_id#27],

display(spark.sgl("""exp functions=[finalmerge_sum(merge sum#1735L) AS

lain select player_id, sum(cast(shots#32 as bigint))#1728L, finalmerge_sum(merge
sum(shots) as shots, sum#1737L) AS sum(cast(goals#31 as bigint)}#1729L])
sum(goals) as goals +- Exchange hashpartitioning(player_id#27, 200)

+- *(1) HashAggregate(keys=[player_id#27],

from stats functions=[partial_sum(cast(shots#32 as bigint)) AS sum#1735L,

group by player_id partial_sum(cast(goals#31 as bigint)) AS sum#1737L])

having goals >= +- *(1) FileScan csv [player_id#27,goals#31,shots#32]
5") Batched: false, DataFilters: [, Format: CSV, Location:

InMemoryFileIndex[dbfs:/FileStore/tables/game_skater_stats.csv],
PartitionFilters: [], PushedFilters: [, ReadSchema:
struct<player_id:int,goals:int,shots:int>
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Summary

« SQL provides a standard way to analyze data
« Select

 Join

« Group By
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<5> Machine Learning on
Spark
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MLib

- MLIib is Spark’s machine learning (ML) library

* ML Algorithms: common learning algorithms such as classification,
regression, clustering, and collaborative filtering

 Featurization: feature extraction, transformation, dimensionality
reduction, and selection

* Pipelines: tools for constructing, evaluating, and tuning ML Pipelines
- Utilities: linear algebra, statistics, data handling, etc.
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Example

Pearson correlation matrix:

DenseMatrix([[ 1. , ©0.05564149, nan, 0.40047142],

[ 0.05564149, 1. , nan, ©.91359586],

from pyspark.ml.linalg import Vectors [ nan, nan, 1. , nan],

from pyspark.ml.stat import Correlation [ 0.40047142, 0.91359586, nan, 1. 11)
Spearman correlation matrix:

data = [(Vectors.sparse(4, [(0, 1.0), (3, -2.0)1),), DenseMatrix([[ 1. » 0.10540926, nan, 0.4 1,

(Vectors.dense([4.0, 5.0, 0.0, 3.01),), [ 0.10540926, 1. ’ nan, ©0.9486833 ],

(Vectors.dense([6.0, 7.0, 0.0, 8.01),), [ han, nan, 1. ’ nanl,

(Vectors.sparse(4, [(0, 9.0), (3, 1.0)1),)] [ 0.4 » 0.9486833 nan, 1. 1)

df

spark.createDataFrame(data, ["features"])

ril
print("Pearson correlation matrix:\n" + str(rl1[0]))

Correlation.corr(df, "features").head()

r2 = Correlation.corr(df, "features", "spearman").head()
print("Spearman correlation matrix:\n" + str(r2[0]))
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ypothesis Testing

from pyspark.ml.linalg import Vectors

from pyspark.ml.stat import ChiSquareTest

data = [(0.
(0.
(1.
(0.
(0.
(1.
df = spark.

Vectors.
Vectors.
Vectors.
Vectors
Vectors.
Vectors.

dense (0.
dense(1.
dense(1.
.dense(3.
dense(3.
dense(3.

5,
5,
5,
5,
5

’

5,

reateDataFrame(data,

10.0)),
20.0)),
30.0)),
30.0)),
40.0)),
40.0))]
["label", "features"])

r = ChiSquareTest.test(df, "features", "label").head()

print("pValues:

+ str(r.pValues))

print("degreesOfFreedom: " + str(r.degreesOfFreedom))

print("statistics:

" + str(r.statistics))
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Table 1

pValues: [0.687289278791|0.682270330336]
degreesOfFreedom: [2 3]

statistics: [0.75

1.9]




Extracting Features

- Feature Extractors
* TF-IDF
« Word2Vec
« CountVectorizer
 FeatureHasher

- Feature Transformers
- Tokenizer
» StopWordsRemover
* N-gram
- PCA
 Imputer
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TH/IDF

from pyspark.ml.feature import HashingTF, IDF, Tokenizer
sentenceData = spark.createDataFrame( [

(0.0, "Hi I heard about Spark"),

(0.0, "I wish Java could use case classes"),

(1.0, "Logistic regression models are neat")
1, ["label", “sentence"])

t———— e +
tokenizer = Tokenizer(inputCol="sentence", outputCol="words") l}f?f}l____________ff?ig[fil
wordsData = tokenizer.transform(sentenceData) | 0.0|(20,[0,5,9,171,[0...

| ©.0]|(20,[2,7,9,13,15]...|
hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", l__il?lig?iffiéiifiiéiiéllll

numFeatures=20)
featurizedData = hashingTF.transform(wordsData)

idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)
rescaledData = idfModel.transform(featurizedData)

rescaledData.select("label", "features").show()
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Word2Vec

from pyspark.ml.feature import Word2Vec

documentDF = spark.createDataFrame( [
("Hi I heard about Spark".split(" "), ),
("I wish Java could use case classes".split(" "), ),
("Logistic regression models are neat".split(" "), )
1, ["text"])

word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="text",
outputCol="result")
model = word2Vec.fit(documentDF)

result = model.transform(documentDF)
for row in result.collect():

text, vector = row

print("Text: [%s] => \nVector: \n" % (", ".join(text),
str(vector)))

Text: [Hi, I, heard, about, Spark] =>
Vector: [-0.0159335330129,0.0215295135975,0.00646775923669]

Text: [I, wish, Java, could, use, case, classes] =>
Vector: [-0.0109682194889,-0.0309452622065,0.00577214998858]

Text: [Logistic, regression, models, are, neat] =>
Vector: [-0.0435343801975,0.0350369662046,0.0243757784367]
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PCA

from pyspark.ml.feature import PCA
from pyspark.ml.linalg import Vectors

data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)1),),
(Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.01),),
(Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]

df = spark.createDataFrame(data, ["“features"])

pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures")
model = pca.fit(df)

result = model.transform(df).select("pcaFeatures")

result.show(truncate=False) T +

| [1.6485728230883807,-4.013282700516296,-5.51655055421941] |
| [-4.645104331781532,-1.1167972663619032,-5.516550554219409] |
| [-6.428880535676488,-5.337951427775355,-5.51655055421941] |
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Classification and Regression

+ Classification
+ Logistic regression
* Decision tree classifier
+ Random forest classifier

* Regression
* Linear regression
+ Generalized linear regression
+ Decision tree regression

* Linear methods

* Decision trees

* Tree Ensembles
* Random Forests
 Gradient-Boosted Trees (GBTSs)

Data Science in the Wild, Spring 2019



Linear Regression

from pyspark.ml.regression import LinearRegression
training = spark.read.format("libsvm")\
. load("data/mllib/sample_linear_regression_data.txt")

1r = LinearRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)

lrModel = lr.fit(training)

X

print("Coefficients: " % str(lrModel.coefficients))
print("Intercept: " % str(lrModel.intercept))

trainingSummary = lrModel.summary

print("numIterations: " % trainingSummary.totallterations)
print("objectiveHistory: " % str(trainingSummary.objectiveHistory))
trainingSummary. residuals.show()

print ("RMSE: " % trainingSummary.rootMeanSquaredError)

print("r2: % trainingSummary.r2




from pyspark.ml import Pipeline
Random Forest from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator
data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
featureIndexer =\
VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data
(trainingData, testData) = data.randomSplit([0.7, 0.3])
rf = RandomForestRegressor(featuresCol="indexedFeatures")
pipeline = Pipeline(stages=[featureIndexer, rf])
model = pipeline.fit(trainingData)
predictions = model.transform(testData)
predictions.select("prediction", "label", "features").show(5)
evaluator = RegressionEvaluator(
labelCol="1abel", predictionCol="prediction", metricName='"rmse")
rmse = evaluator.evaluate(predictions)
print('"Root Mean Squared Error (RMSE) on test data = %g" % rmse)

rfModel = model.stages[1]
print(rfModel)
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Other Functions

» Clustering * Frequent Pattern Mining
» K-means » FP-Growth
- Latent Dirichlet allocation (LDA) * PrefixSpan
* Bisecting k-means « Model quality
» Gaussian Mixture Model (GMM) - Model selection (a.k.a.

hyperparameter tuning)
« Cross-Validation
« Train-Validation Split

» Collaborative Filtering
 Explicit vs. implicit feedlback
 Scaling of the regularization parameter
- Cold-start strategy
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ML Pipelines

* In machine learning, it is common to run a sequence of algorithms to
process and learn from data. E.g., a simple text document processing
workflow might include several stages:

« Split each document’s text into words.
- Convert each document’s words into a numerical feature vector.
* Learn a prediction model using the feature vectors and labels.

« MLIlib represents such a workflow as a Pipeline, which consists of a
sequence of PipelineStages (Transformers and Estimators) to be run in

a specific order
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Transformers

« A Transformer is an abstraction that includes feature transformers and
learned models. Technically, a Transformer implements a
method transform(), which converts one DataFrame into another,
generally by appending one or more columns. For example:

* A feature transformer might take a DataFrame, read a column (e.g.,
text), map it into a new column (e.q., feature vectors), and output a
new DataFrame with the mapped column appended.

* A learning model might take a DataFrame, read the column containing
feature vectors, predict the label for each feature vector, and output a
new DataFrame with predicted labels appended as a column.
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Estimators

* An Estimator abstracts the concept of a learning algorithm or any
algorithm that fits or trains on data.

- An Estimator implements a method fit(), which accepts
a DataFrame and produces a Model.

* For example, a learning algorithm such as LogisticRegression is

an Estimator, and calling fit() trains a LogisticRegressionModel, which is
a Model and hence a Transformer.
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Pipelines

Pipeline [ ) ] [ . } Logistic
(Estimator) Tokenizer | ™) | HashingTF | =) Regression
Logistic
. —> - —> - —> { Regression ]
Pipeline.fit Model
P fitl) Raw Words Feature
text vectors

* The first two stages (Tokenizer and HashingTF) are Transformers (blue),
and the third (LogisticRegression) is an Estimator (red)
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Example

from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer

training = spark.createDataFrame( [
(0, "a b cde spark", 1.0),
(1, "b d", 0.0),
(2, "spark f g h", 1.0),
(3, "hadoop mapreduce", 0.0)
1, ["id", "text", "label"])

tokenizer = Tokenizer(inputCol="text", outputCol="words")

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
Lr = LogisticRegression(maxIter=10, regParam=0.001)

pipeline = Pipeline(stages=[tokenizer, hashingTF, 1r])
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Cont’d

model = pipeline.fit(training)

test = spark.createDataFrame( [
(4, "spark i j k"),
(5, "L mn"),
(6, "spark hadoop spark"),
(7, "apache hadoop")

1, ["id", "text"])

prediction = model.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():

rid, text, prob, prediction = row

print (" (%d, ) ——> prob=%s, prediction= % (rid, text, str(prob), prediction))
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* The challenges of big data
* HDFS
* MapReduce

« Spark
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