

Lecture 11: In-memory Parallel Processing in Spark

Eran Toch

The Scale of Big Data

Big Data = Transactions + Interactions + Observations

Source: Contents of above graphic created in partnership with Teradata, Inc.

Agenda

- 1. Spark
- 2. Spark DataFrames
- 3. Spark SQL
- 4. Machine Learning on Spark
- 5. ML Pipelines

Technological Architecture

Processing

MapReduce / YARN

Hadoop Distributed File System (HDFS)

Motivation

- Acyclic data flow is a powerful abstraction, but is not efficient for applications that repeatedly reuse a working set of data:
 - Iterative algorithms (many in machine learning)
 - Interactive data mining tools (R, Excel, Python)
- Spark makes working sets a first-class concept to efficiently support these apps

History

National Science Foundation Expeditions in Computing

ABOUT

PEOPLE

PAPERS PROJECTS

SOFTWARE

BLOG SPONSORS

PHOTOS

Search

Login

AMP. ALGORITHMS MACHINES PEOPLE SCALE, IMMEDIACY, & CONTINUOUS IMPROVEMENT

Machine learning (ML) turns data into information and knowledge.

While it is useful to view ML as a toolbox that can be deployed for many data-centric problems, our long-term goal is more ambitious—we are developing ML as a full-fledged engineering discipline.

Events

More »

Blog

More »

[AMPLab Seminar] Martin Körling, Ericsson, "cloud infrastructure for high-data-volume and low-latency applications", Th 11/3, Noon, The Woz

[Seminar] Alvin Cheung, U Washington, Towards Self-Generating Data Management Systems, Th 11/10, noon, 373 Soda

AMPLab End Of Project Celebration (Th&F 11/17,18)

Logistic Regression Performance

Spark

- Provides distributed memory abstractions for clusters to support apps with working sets
- Retain the attractive properties of MapReduce:
 - Fault tolerance (for crashes & stragglers)
 - Data locality
 - Scalability

Languages

- Scala: Spark is primarily written in Scala, making it Spark's "default" language. This book will include Scala code examples wherever relevant.
- Java
- Python
- SQL: Spark supports ANSI SQL 2003 standard
- R: Spark has two commonly used R libraries, one as a part of Spark core (SparkR) and another as an R community driven package (sparklyr

Running Spark

- Self Hosted: You can set up a cluster yourself using bare metal machines or virtual machines
- Cloud Providers: Most cloud providers offer Spark clusters: AWS has EMR and GCP has DataProc.
- Vendor Solutions: Companies including Databricks and Cloudera provide Spark solutions

Environments

```
To adjust logging level use sc.setLogLevel("INFO")
  /_/___/__/
/__/.__/_/_/__/ version 1.6.1
Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_121)
Type in expressions to have them evaluated.
Type :help for more information.
17/07/26 22:11:03 WARN SparkConf:
SPARK WORKER INSTANCES was detected (set to '2').
This is deprecated in Spark 1.0+.
Please instead use:
- ./spark-submit with --num-executors to specify the number of executors
- Or set SPARK_EXECUTOR_INSTANCES
- spark.executor.instances to configure the number of instances in the spark config.
Spark context available as sc.
17/07/26 22:11:05 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
17/07/26 22:11:05 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
17/07/26 22:11:07 WARN ObjectStore: Version information not found in metastore, hive metastore.schema.verifi
17/07/26 22:11:07 WARN ObjectStore: Failed to get database default, returning NoSuchObjectException
17/07/26 22:11:08 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
17/07/26 22:11:08 WARN Connection: BoneCP specified but not present in CLASSPATH (or one of dependencies)
SQL context available as sqlContext.
```


Spark Shell

Jupyter Integration

https://medium.com/@yajieli/installing-spark-pyspark-on-mac-and-fix-of-some-common-errors-355a9050f735

scala>

DataBricks

Spark Structure

https://pages.databricks.com/gentle-intro-spark.html

Spark Programming

- Resilient Distributed Datasets (RDDs)
 - Phased out
- DataFrames
- Spark SQL

https://towardsdatascience.com/sql-at-scale-with-apache-spark-sql-and-dataframes-concepts-architecture-and-examples-c567853a702f

<2> Spark DataFrames

Data Frames

- A DataFrame is the most common Structured API and simply represents a table of data with rows and columns
- The list of columns and the types in those columns the schema
- A Spark DataFrame can be parallelized across thousands of computers

game_id	player_id =	team_id	timeOnIce -	assists 🔻	goals 🔻	shots 🔻	hits 🔻	powerPlayGoals =	powerPlayAssists	penaltyMinutes	fac
2012030221	8471958	3	1925	0	0	0	3	0	0	0	0
2012030221	8471339	3	1597	1	0	2	3	0	0	0	0
2012030221	8471873	3	1695	0	0	1	2	0	0	0	0
2012030221	8473432	3	957	0	0	3	5	0	0	2	0
2012030221	8470192	3	859	0	0	1	0	0	0	2	0
2012030221	8474151	3	1919	0	1	3	5	0	0	0	0
2012030221	8475184	3	697	0	0	0	3	0	0	0	0
2012030221	8475186	3	933	0	0	1	0	0	0	2	0
001000001	0.474476	2	1100	4	n	4	2	0	0	^	0

Partitions

- To allow every executor to perform work in parallel, Spark breaks up the data into chunks, called partitions
- A partition is a collection of rows that sit on one physical machine in our cluster
- Programming with Dataframes means that we specify high-level transformations of data and Spark determines how this work will actually execute on the cluster.
- Lower level APIs do exist (via the Resilient Distributed Datasets interface)

Loading Data

file_location = "/FileStore/tables/game_skater_stats.csv"

df = spark.read.format("csv").option("inferSchema",

True).option("header", True).load(file_location)

display(df)

 (3) Spark Jobs df: pyspark.sql.dataframe.DataFrame = [game_id: integer, player_id: integer 20 more fields] 										
game_id 🔻	player_id 🔻	team_id	timeOnIce -	assists 🔻	goals 🔻	shots -	hits 🔻	powerPlayGoals =	powerPlayAssists	penaltyMinutes
2012030221	8471958	3	1925	0	0	0	3	0	0	0
2012030221	8471339	3	1597	1	0	2	3	0	0	0
2012030221	8471873	3	1695	0	0	1	2	0	0	0

3 5 2012030221 8473432 957 0 2012030221 8470192 3 0 2 2012030221 8474151 3 1919 0 0 0 697 2012030221 8475184 0 0 2 2012030221 8475186 933 1100 001000001 0474176

Showing the first 1000 rows.

■ ... ■

Command took 3.25 seconds -- by erantoch@gmail.com at 3/19/2019, 6:14:21 PM on QuickStart

https://towardsdatascience.com/a-brief-introduction-to-pyspark-ff4284701873

Ways to Read Data

- Reading from CSV is done in an "eager" mode: the data is immediately loaded to the memory
- Lazy initialization is generally preferred with Spark
- It is possible with parquet files

```
df = spark.read .load("s3a://my_bucket/game_skater_stats/*.parquet")
```

Writing Data

Writing to Parquet:

```
# DBFS (Parquet)
df.write.save('/FileStore/parquet/game_stats',format='parquet')
# S3 (Parquet)
df.write.parquet("s3a://my_bucket/game_stats", mode="overwrite")
```

Writing to CSV:

Schemas

df.printSchema()

•

```
root
 |-- game_id: integer (nullable = true)
 |-- player_id: integer (nullable = true)
 -- team_id: integer (nullable = true)
 -- timeOnIce: integer (nullable = true)
 -- assists: integer (nullable = true)
 -- goals: integer (nullable = true)
 |-- shots: integer (nullable = true)
 -- hits: integer (nullable = true)
 -- powerPlayGoals: integer (nullable = true)
 -- powerPlayAssists: integer (nullable = true)
 -- penaltyMinutes: integer (nullable = true)
 -- faceOffWins: integer (nullable = true)
 |-- faceoffTaken: integer (nullable = true)
 -- takeaways: integer (nullable = true)
 -- giveaways: integer (nullable = true)
 |-- shortHandedGoals: integer (nullable = true)
 |-- shortHandedAssists: integer (nullable = true)
 -- blocked: integer (nullable = true)
 -- plusMinus: integer (nullable = true)
 -- evenTimeOnIce: integer (nullable = true)
 |-- shortHandedTimeOnIce: integer (nullable = true)
 -- powerPlayTimeOnIce: integer (nullable = true)
```

Operations

```
unionDF = df1.unionAll(df2)
display(unionDF)

df = unionDF.select(explode("employees").alias("e"))
explodeDF = df.selectExpr("e.firstName", "e.lastName", "e.email", "e.salary")

filterDF = explodeDF.filter(explodeDF.firstName == "xiangrui").sort(explodeDF.lastName)
display(filterDF)

•Replace null values with -- using DataFrame Na function
nonNullDF = explodeDF.fillna("--")
display(nonNullDF)
```

<4> Spark SQL

Spark SQL

- SQL: Structure Query Language was defined for relational databases
- Spark SQL is borrowed from HIVE's implementation of a limited language for Hadoop-based datasets
- Spark SQL provides a DataFrame API that can perform relational operations on both external data sources and Spark's built-in distributed collections

https://towardsdatascience.com/sql-at-scale-with-apache-spark-sql-and-dataframes-concepts-architecture-and-examples-c567853a702f

Running SQL

- SQL runs as a "language inside language" model
- Databases and tables can be created independently or from DataFrames

```
df.createOrReplaceTempView("stats")
display(spark.sql("""
   select player_id, sum(1) as games, sum(goals) as goals
   from stats
   group by 1
   order by 3 desc
   limit 5
""""))
```

spark.sql("show databases")

Commands

- Show databases
- Show tables
- Create Database
- Alter Database
- Drop Database
- Create Table / View / Function
- Drop Table / View / Function

- Select
- Insert
- Alter
- •

Basic Data Structure

spark.sql("Create Database customer_data")
display(spark.sql("show databases"))

databaseName
customer_data
default

Databases

Tables

display(spark.sql("show tables"))

database	tableName	isTemporary
default	diamonds	false
	stats	true

Creating Tables

```
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] [db_name.]table_name
        [(col_name1 col_type1 [COMMENT col_comment1], ...)]
    USING datasource
        [OPTIONS (key1=val1, key2=val2, ...)]
        [PARTITIONED BY (col_name1, col_name2, ...)]
        [CLUSTERED BY (col_name3, col_name4, ...) INTO num_buckets BUCKETS]
        [LOCATION path]
        [COMMENT table_comment]
        [TBLPROPERTIES (key1=val1, key2=val2, ...)]
        [AS select_statement]
CREATE TABLE boxes (width INT, length INT, height INT) USING CSV
```

TEMPORARY

The created table will be available only in this session and will not be persisted to the underlying metastore

Example

```
USING PARQUET

PARTITIONED BY (width)

CLUSTERED BY (length) INTO 8 buckets

AS SELECT * FROM boxes
```

USING <data source>

The file format to use for the table. One

of TEXT, CSV, JSON, JDBC, PARQUET, ORC, HIVE, DELTA, and LIBSVM

PARTITIONED BY

Partition the created table by the specified columns. A directory is created for each partition.

CLUSTERED BY

Each partition in the created table will be split into a fixed number of buckets by the specified columns. This is typically used with partitioning to read and shuffle less data. Support for SORTED BY will be added in a future version.

LOCATION

The created table uses the specified directory to store its data. This clause automatically implies EXTERNAL.

AS <select statement>

Populate the table with input data from the select statement. This may not be specified with TEMPORARY TABLE or with a column list. To specify it with TEMPORARY, use CREATE TEMPORARY VIEW instead.

Select Example

```
df.createOrReplaceTempView("stats")
display(spark.sql("""
    select player_id, sum(1) as games, sum(goals) as goals
    from stats
    group by 1
    order by 3 desc
    limit 5
"""))
```

player_id	games	goals
8471214	520	299
8471675	522	221
8474141	499	216
8470794	515	207
8475765	465	200

Select

```
SELECT [hints, ...] [ALL|DISTINCT] named_expression[, named_expression, ...]
    FROM relation[, relation, ...]
    [lateral view[, lateral view, ...]]
    [WHERE boolean expression]
    [aggregation [HAVING boolean_expression]]
    [ORDER BY sort expressions]
    [CLUSTER BY expressions]
    [DISTRIBUTE BY expressions]
    [SORT BY sort expressions]
    [WINDOW named window[, WINDOW named window, ...]]
    [LIMIT num rows]
named expression:
    : expression [AS alias]
relation:
    | join relation
    (table name|query|relation) [sample] [AS alias]
    : VALUES (expressions)[, (expressions), ...]
          [AS (column name[, column name, ...])]
expressions:
    : expression[, expression, ...]
sort expressions:
    : expression [ASC|DESC][, expression [ASC|DESC], ...]
                                                                             34
```

Examples

```
SELECT * FROM boxes

SELECT width, length FROM boxes WHERE height=3

SELECT DISTINCT width, length FROM boxes WHERE height=3 LIMIT 2

SELECT * FROM boxes ORDER BY width
```

- DISTINCT: select all matching rows from the relation then remove duplicate results.
- WHERE: Filter rows by predicate.
- ORDER BY: Impose total ordering on a set of expressions. Default sort direction is ascending. You cannot use this with SORT BY, CLUSTER BY, or DISTRIBUTE BY.
- SORT BY: Impose ordering on a set of expressions within each partition. Default sort direction is ascending. You cannot use this with ORDER BY or CLUSTER BY.
- LIMIT: Limit the number of rows returned.

Casting and Functions

select cast(goals/shots * 50 as int)/50.0 as Goals_per_shot ,sum(1) as Players

https://docs.databricks.com/spark/latest/spark-sql/la

<u>!</u>	<u>char</u>	floor	map keys	schema_of_jso n	<u>uuid</u>
<u>%</u>	char_length	format_number	map_values	<u>second</u>	var_pop
<u>&</u>	<u>character_lengt</u> <u>h</u>	format_string	max	<u>sentences</u>	var_samp
*	<u>chr</u>	from_json	<u>md5</u>	<u>sequence</u>	<u>variance</u>
<u>+</u>	<u>coalesce</u>	from unixtime	<u>mean</u>	<u>sha</u>	<u>weekday</u>
Ξ	collect list	from_utc_times tamp	<u>min</u>	sha1	weekofyear
<u>L</u>	collect set	get_json_objec t	<u>minute</u>	sha2	when
≤	<u>concat</u>	<u>greatest</u>	mod	<u>shiftleft</u>	<u>window</u>
≤=	concat_ws	grouping	monotonically increasing id	<u>shiftright</u>	<u>xpath</u>
<u><=></u>	conv	grouping_id	month	shiftrightunsign ed	xpath_boolean
Ξ	corr	hash months betwe		<u>shuffle</u>	xpath_double
	cos	<u>hex</u>	named_struct	<u>sign</u>	xpath_float
>	<u>cosh</u>	<u>hour</u>	<u>nanvl</u>	<u>signum</u>	xpath_int
<u>>=</u>	cot	hypot	<u>negative</u>	<u>sin</u>	xpath_long
<u>^</u>	<u>count</u>	<u>if</u>	next_day	<u>sinh</u>	xpath_number
<u>abs</u>	count min ske tch	<u>ifnull</u>	not	size	xpath_short
acos	covar pop	<u>in</u>	now	<u>skewness</u>	xpath_string
add_months	covar_samp	<u>initcap</u>	<u>ntile</u>	<u>slice</u>	<u>year</u>
<u>aggregate</u>	<u>crc32</u>	<u>inline</u>	<u>nullif</u>	<u>smallint</u>	zip_with
<u>and</u>	<u>cube</u>	inline_outer	<u>nvl</u>	sort array	<u>l</u>
approx_count_ distinct	cume dist	input_file_block length	nvl2	soundex	~
approx_percen tile	current_databa se	input_file_block start	octet length	<u>space</u>	
array	current date	input_file_nam e	<u>or</u>	spark partition i	<u>d</u>
array contains	current_timesta mp	instr	parse url	<u>split</u>	
array_distinct	<u>date</u>	<u>int</u>	percent_rank	sqrt	

Examples

```
SELECT * FROM boxes DISTRIBUTE BY width SORT BY width
SELECT * FROM boxes CLUSTER BY length
SELECT * FROM boxes TABLESAMPLE (3 ROWS)
SELECT * FROM boxes TABLESAMPLE (25 PERCENT)
```

HAVING

Filter grouped result by predicate.

DISTRIBUTE BY

Repartition rows in the relation based on a set of expressions. Rows with the same expression values will be hashed to the same worker. You cannot use this with order by or cluster by.

CLUSTER BY

Repartition rows in the relation based on a set of expressions and sort the rows in ascending order based on the expressions. In other words, this is a shorthand for DISTRIBUTE BY and SORT BY where all expressions are sorted in ascending order. You cannot use this with ORDER BY, DISTRIBUTE BY, Or SORT BY.

Sample

Sample the input data. This can be expressed in terms of either a percentage (must be between 0 and 100) or a fixed number of input rows.

Joins

```
SELECT * FROM boxes INNER JOIN rectangles ON boxes.width = rectangles.width

SELECT * FROM boxes FULL OUTER JOIN rectangles USING (width, length)

SELECT * FROM boxes NATURAL JOIN rectangles
```

•

INNER JOIN

Select all rows from both relations where there is match.

OUTER JOIN

Select all rows from both relations, filling with null values on the side that does not have a match.

SEMI JOIN

Select only rows from the side of the SEMI JOIN where there is a match. If one row matches multiple rows, only the first match is returned.

LEFT ANTI JOIN

Select only rows from the left side that match no rows on the right side.

Aggregation

Group by a set of expressions using one or more aggregate functions. Common built-in aggregate functions include count, avg, min, max, and sum.

```
display(spark.sql("""
    select cast(goals/shots * 50 as int)/50.0 as Goals_per_shot
        ,sum(player_id) as Players
    from (
        select player_id, sum(shots) as shots, sum(goals) as goals
        from stats
        group by player_id
        having goals >= 5
    )
    group by Goals_per_shot
    order by Goals_per_shot
```


Spark also provides different ways to group by, with ROLLUP, CUBE, and GROUPING SETS

Explain

 Provide detailed plan information about statement without actually running it

```
display(spark.sql("""exp
lain select player_id,
sum(shots) as shots,
sum(goals) as goals
from stats
group by player_id
having goals >=
5"""))
```

```
== Physical Plan ==
*(2) Filter (isnotnull(goals#1725L) && (goals#1725L >= 5))
+- *(2) HashAggregate(keys=[player_id#27],
functions=[finalmerge sum(merge sum#1735L) AS
sum(cast(shots#32 as bigint))#1728L, finalmerge_sum(merge
sum#1737L) AS sum(cast(goals#31 as bigint))#1729L])
 +- Exchange hashpartitioning(player id#27, 200)
   +- *(1) HashAggregate(keys=[player_id#27],
functions=[partial sum(cast(shots#32 as bigint)) AS sum#1735L,
partial_sum(cast(goals#31 as bigint)) AS sum#1737L])
     +- *(1) FileScan csv [player id#27,goals#31,shots#32]
Batched: false, DataFilters: [], Format: CSV, Location:
InMemoryFileIndex[dbfs:/FileStore/tables/game_skater_stats.csv],
PartitionFilters: [], PushedFilters: [], ReadSchema:
struct<player id:int,goals:int,shots:int>
```

Summary

- SQL provides a standard way to analyze data
- Select
- Join
- Group By

<5> Machine Learning on Spark

MLib

- MLlib is Spark's machine learning (ML) library
 - ML Algorithms: common learning algorithms such as classification, regression, clustering, and collaborative filtering
 - Featurization: feature extraction, transformation, dimensionality reduction, and selection
 - Pipelines: tools for constructing, evaluating, and tuning ML Pipelines
 - Utilities: linear algebra, statistics, data handling, etc.

Example

```
from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import Correlation
data = [(Vectors.sparse(4, [(0, 1.0), (3, -2.0)]),),
        (Vectors.dense([4.0, 5.0, 0.0, 3.0]),),
        (Vectors.dense([6.0, 7.0, 0.0, 8.0]),),
        (Vectors.sparse(4, [(0, 9.0), (3, 1.0)]),)]
df = spark.createDataFrame(data, ["features"])
r1 = Correlation.corr(df, "features").head()
print("Pearson correlation matrix:\n" + str(r1[0]))
r2 = Correlation.corr(df, "features", "spearman").head()
print("Spearman correlation matrix:\n" + str(r2[0]))
```

```
Pearson correlation matrix:
DenseMatrix([[ 1. , 0.05564149,
                                     nan, 0.40047142],
          [ 0.05564149, 1. , nan, 0.91359586],
                          nan, 1. , nan],
                 nan,
          [ 0.40047142, 0.91359586, nan, 1. ]])
Spearman correlation matrix:
DenseMatrix([[ 1. , 0.10540926, nan, 0.4 ],
          [ 0.10540926, 1. , nan, 0.9486833 ],
                nan,
                     nan, 1.
                                               nan],
          [ 0.4 , 0.9486833 , nan, 1.
                                                 11)
Command took 3.24 seconds -- by erantoch@gmail.com at 3/25/2019, 4:07:09 PM on TeachingSpar
```

Hypothesis Testing

```
from pyspark.ml.linalg import Vectors
from pyspark.ml.stat import ChiSquareTest
data = [(0.0, Vectors.dense(0.5, 10.0)),
        (0.0, Vectors.dense(1.5, 20.0)),
        (1.0, Vectors.dense(1.5, 30.0)),
        (0.0, Vectors.dense(3.5, 30.0)),
        (0.0, Vectors.dense(3.5, 40.0)),
        (1.0, Vectors.dense(3.5, 40.0))]
df = spark.createDataFrame(data, ["label", "features"])
r = ChiSquareTest.test(df, "features", "label").head()
print("pValues: " + str(r.pValues))
print("degreesOfFreedom: " + str(r.degreesOfFreedom))
print("statistics: " + str(r.statistics))
```

Table 1

pValues: [0.687289278791	0.682270330336]
degreesOfFreedom: [2	3]
statistics: [0.75	1.5]

Extracting Features

- Feature Extractors
 - TF-IDF
 - Word2Vec
 - CountVectorizer
 - FeatureHasher
- Feature Transformers
 - Tokenizer
 - StopWordsRemover
 - n-gram
 - PCA
 - Imputer

•

TF/IDF

```
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
sentenceData = spark.createDataFrame([
    (0.0, "Hi I heard about Spark"),
    (0.0, "I wish Java could use case classes"),
    (1.0, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsData = tokenizer.transform(sentenceData)
hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures",
numFeatures=20)
featurizedData = hashingTF.transform(wordsData)
# alternatively, CountVectorizer can also be used to get term
frequency vectors
idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)
rescaledData = idfModel.transform(featurizedData)
rescaledData.select("label", "features").show()
```

```
+----+
|label| features|
+-----+
| 0.0|(20,[0,5,9,17],[0...|
| 0.0|(20,[2,7,9,13,15]...|
| 1.0|(20,[4,6,13,15,18...|
```

Word2Vec

from pyspark.ml.feature import Word2Vec # Input data: Each row is a bag of words from a sentence or document. documentDF = spark.createDataFrame([("Hi I heard about Spark".split(" "),), ("I wish Java could use case classes".split(" "),), ("Logistic regression models are neat".split(" "),)], ["text"]) # Learn a mapping from words to Vectors. word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="text", outputCol="result") Text: [Hi, I, heard, about, Spark] => model = word2Vec.fit(documentDF) Vector: [-0.0159335330129,0.0215295135975,0.00646775923669] result = model_transform(documentDF) Text: [I, wish, Java, could, use, case, classes] => Vector: [-0.0109682194889,-0.0309452622065,0.00577214998858] for row in result.collect(): text, vector = row Text: [Logistic, regression, models, are, neat] => print("Text: [%s] => \nVector: %s\n" % (", ".join(text), Vector: [-0.0435343801975,0.0350369662046,0.0243757784367] str(vector)))

PCA

```
from pyspark.ml.feature import PCA
from pyspark.ml.linalg import Vectors
data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),),
        (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),),
        (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)]
df = spark.createDataFrame(data, ["features"])
pca = PCA(k=3, inputCol="features", outputCol="pcaFeatures")
model = pca.fit(df)
result = model.transform(df).select("pcaFeatures")
                                                          pcaFeatures
result.show(truncate=False)
                                                           [1.6485728230883807, -4.013282700516296, -5.51655055421941]
                                                           [-4.645104331781532, -1.1167972663619032, -5.516550554219409]
                                                           [-6.428880535676488,-5.337951427775355,-5.51655055421941]
```

Classification and Regression

- Classification
 - Logistic regression
 - Decision tree classifier
 - Random forest classifier
 - ...
- Regression
 - Linear regression
 - Generalized linear regression
 - Decision tree regression
 - ...
- Linear methods
- Decision trees
- Tree Ensembles
 - Random Forests
 - Gradient-Boosted Trees (GBTs)

Linear Regression

```
from pyspark.ml.regression import LinearRegression
# Load training data
training = spark.read.format("libsvm")\
    .load("data/mllib/sample linear regression data.txt")
lr = LinearRegression(maxIter=10, regParam=0.3, elasticNetParam=0.8)
# Fit the model
lrModel = lr.fit(training)
# Print the coefficients and intercept for linear regression
print("Coefficients: %s" % str(lrModel.coefficients))
print("Intercept: %s" % str(lrModel.intercept))
# Summarize the model over the training set and print out some metrics
trainingSummary = lrModel.summary
print("numIterations: %d" % trainingSummary.totalIterations)
print("objectiveHistory: %s" % str(trainingSummary.objectiveHistory))
trainingSummary residuals show()
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
print("r2: %f" % trainingSummary.r2)
```

Random Forest

```
from pyspark.ml import Pipeline
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.feature import VectorIndexer
from pyspark.ml.evaluation import RegressionEvaluator
```

```
# Load and parse the data file, converting it to a DataFrame.
data = spark.read.format("libsvm").load("data/mllib/sample libsvm data.txt")
# Automatically identify categorical features, and index them.
# Set maxCategories so features with > 4 distinct values are treated as continuous.
featureIndexer =\
    VectorIndexer(inputCol="features", outputCol="indexedFeatures", maxCategories=4).fit(data
# Split the data into training and test sets (30% held out for testing)
(trainingData, testData) = data_randomSplit([0.7, 0.3])
# Train a RandomForest model.
rf = RandomForestRegressor(featuresCol="indexedFeatures")
# Chain indexer and forest in a Pipeline
pipeline = Pipeline(stages=[featureIndexer, rf])
# Train model. This also runs the indexer.
model = pipeline.fit(trainingData)
# Make predictions.
predictions = model.transform(testData)
# Select example rows to display.
predictions.select("prediction", "label", "features").show(5)
# Select (prediction, true label) and compute test error
evaluator = RegressionEvaluator(
    labelCol="label", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictions)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
rfModel = model.stages[1]
print(rfModel) # summary only
```

Other Functions

- Clustering
 - K-means
 - Latent Dirichlet allocation (LDA)
 - Bisecting k-means
 - Gaussian Mixture Model (GMM)
- Collaborative Filtering
 - Explicit vs. implicit feedback
 - Scaling of the regularization parameter
 - Cold-start strategy

- Frequent Pattern Mining
 - FP-Growth
 - PrefixSpan
- Model quality
 - Model selection (a.k.a. hyperparameter tuning)
 - Cross-Validation
 - Train-Validation Split

ML Pipelines

ML Pipelines

- In machine learning, it is common to run a sequence of algorithms to process and learn from data. E.g., a simple text document processing workflow might include several stages:
 - Split each document's text into words.
 - Convert each document's words into a numerical feature vector.
 - Learn a prediction model using the feature vectors and labels.
- MLlib represents such a workflow as a Pipeline, which consists of a sequence of PipelineStages (Transformers and Estimators) to be run in a specific order

Transformers

- A Transformer is an abstraction that includes feature transformers and learned models. Technically, a Transformer implements a method transform(), which converts one DataFrame into another, generally by appending one or more columns. For example:
- A feature transformer might take a DataFrame, read a column (e.g., text), map it into a new column (e.g., feature vectors), and output a new DataFrame with the mapped column appended.
- A learning model might take a DataFrame, read the column containing feature vectors, predict the label for each feature vector, and output a new DataFrame with predicted labels appended as a column.

Estimators

- An Estimator abstracts the concept of a learning algorithm or any algorithm that fits or trains on data.
- An Estimator implements a method fit(), which accepts a DataFrame and produces a Model.
- For example, a learning algorithm such as LogisticRegression is an Estimator, and calling fit() trains a LogisticRegressionModel, which is a Model and hence a Transformer.

Pipelines

• The first two stages (Tokenizer and HashingTF) are Transformers (blue), and the third (LogisticRegression) is an Estimator (red)

Example

```
from pyspark.ml import Pipeline
from pyspark.ml.classification import LogisticRegression
from pyspark.ml.feature import HashingTF, Tokenizer
# Prepare training documents from a list of (id, text, label) tuples.
training = spark.createDataFrame([
    (0, "a b c d e spark", 1.0),
   (1, "b d", 0.0),
 (2, "spark f g h", 1.0),
    (3, "hadoop mapreduce", 0.0)
], ["id", "text", "label"])
# Configure an ML pipeline, which consists of three stages: tokenizer, hashingTF, and lr.
tokenizer = Tokenizer(inputCol="text", outputCol="words")
hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), outputCol="features")
lr = LogisticRegression(maxIter=10, regParam=0.001)
pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
```

Cont'd

```
# Fit the pipeline to training documents.
model = pipeline.fit(training)
# Prepare test documents, which are unlabeled (id, text) tuples.
test = spark.createDataFrame([
    (4, "spark i j k"),
    (5, "l m n"),
    (6, "spark hadoop spark"),
    (7, "apache hadoop")
], ["id", "text"])
# Make predictions on test documents and print columns of interest.
prediction = model.transform(test)
selected = prediction.select("id", "text", "probability", "prediction")
for row in selected.collect():
    rid, text, prob, prediction = row
    print("(%d, %s) --> prob=%s, prediction=%f" % (rid, text, str(prob), prediction))
```

60

Summary

- The challenges of big data
- HDFS
- MapReduce
- Spark

