Data Science in the Wild

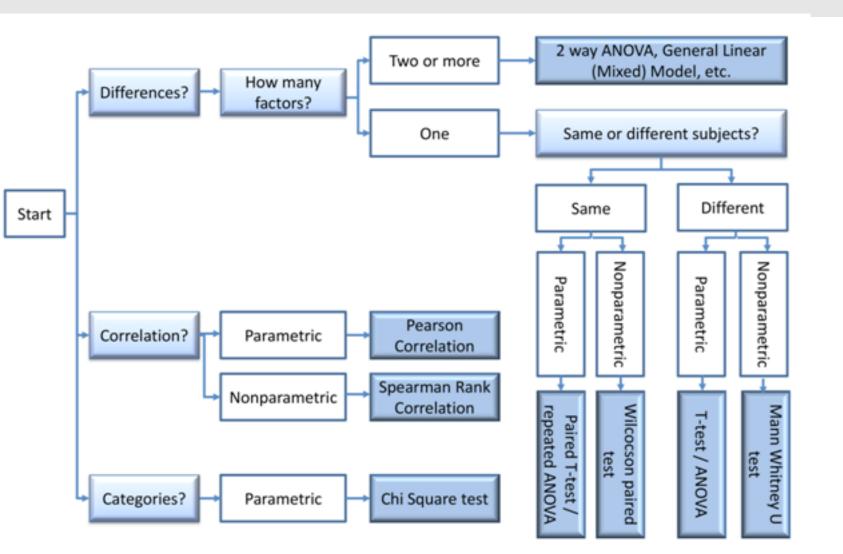
Lecture 8: Advanced Experimental Analysis

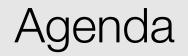
Eran Toch

Data Science in the Wild, Spring 2019

Types of Tests

- Parametric vs. Non-Parametric
- Difference vs. Correlation
- Categorical vs.
 Differential
- Number of samples



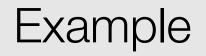


Introduction
 ANOVA
 Post-hoc tests
 Correlation tests
 Sampling

Analysis of Variance - ANOVA

Data Science in the Wild, Spring 2019

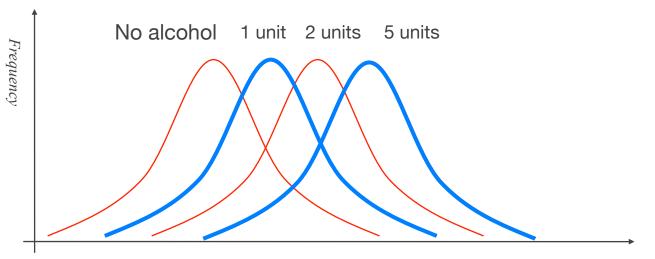
- Every time you conduct a t-test there is a chance that you will make a Type I error with a probability of $\alpha = 0.05$
- By running two t-tests on the same data you will have increased your chance of making a mistake to about 0.1
- ANOVA controls for these errors, keeping the confidence level to 0.95



- If you are comparing 3 groups (A, B, C), than you can do a 3 total comparisons
 A – B
 A – C
 B – C
- The experiment-wise error rate without any adjustments would be: $a_e = 1 - (1 - a)^c$ $= 1 - (1 - .05)^3$ $= 1 - .95^3$ = 1 - 0.86
 - = .14

ANOVA

- ANOVA will tell us if one condition is significantly different to one or more of the others
- But it won't tell us which conditions are different
- We can compare one (or more) against one (or more) of the others



Reaction time (ms)

- Analysis of variance (ANOVA) is used to determine whether groups of data are the same or different
- It incorporates means and variances to determine its test statistics, called the F-ratio
- What is the null hypothesis?
 - $H_{0:} x_1 = x_2 = x_3 = x_4 = \dots x_k (x group mean, k number of groups)$



- The dependent variable is normally distributed in each group
- Homogeneity of variances:
 - The variance in each group should be similar enough.
 - For example, using the Bartlett test
- Data type: The dependent variable must be interval or ratio (e.g., time or error rates)

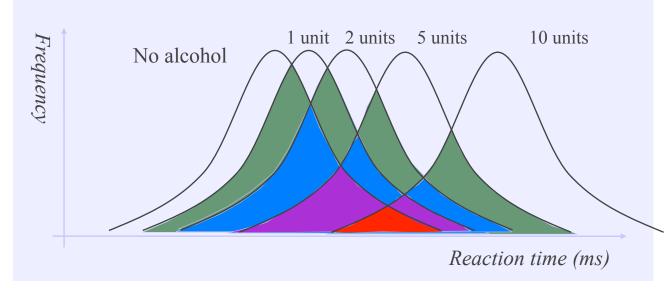
Analysis of Variance (ANOVA)

F-ratio =

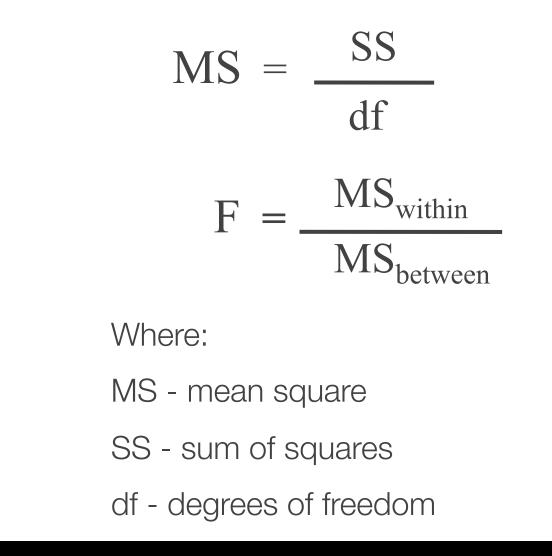
Area of non-overlap (hypothesis true)

Area of overlap (hypothesis false)

- Large "F" means significant differences
- Large "F" means evidence in support of hypothesis
- We need to calculate the size of all these areas



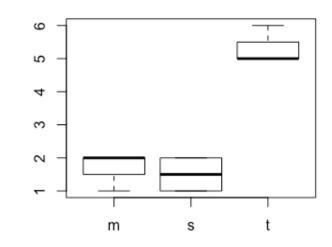
- Mean square
- MS error the variance not accounted for by the variable
- F ratio is a variance ratio or 'signal to noise' ratio
- Large F means large differences accounted for by the variable



One-way Anova

- One-way ANOVA is used to determine whether there are any statistically significant differences between the means of three or more independent groups
- Suits a simple between-subject design with one independent variable

Participant	Condition	Values
1	Mouse	1
2	Mouse	2
3	Mouse	2
4	Touch	5
5	Touch	6
6	Touch	5
7	Speech	2
8	Speech	1



Model

$$Y_{ij} = \mu + A_i + \varepsilon_{ij}$$

- An observation Y_{ij} is given by the average performance of the users (µ), the effect of the treatment (A_i) and an error for each participant and condition ε_{ij}
- Our goal is to test if the hypothesis $A_1 = A_2 = A_3 = A_4 = \dots A_k = 0$ is plausible

Calculation

- Means:
 - $M_{mouse} = (1 + 2 + 2) / 3 = 1.667$
 - $M_{touch} = (5 + 6 + 5) / 3 = 5.33$
 - $M_{Speech} = (1 + 2) / 2 = 1.5$

- The grand mean is calculated as follows:
 - $\mu^{\wedge} = (1 + 2 + 2 + 5 + 6 + 5 + 2 + 1) / 8 = 3$

Estimated Effect

- The estimated effects, $A_i^{,}$, are the difference between the estimated overall mean and the estimated treatment mean: $A_i^{,} = M_i - \mu^{,}$
- Therefore, we get:
 - $A_{\text{mouse}} = 1.667 3 = -1.33$
 - $A_{touch} = 5.333 3 = 2.333$
 - $A_{\text{Speech}} = 1.5 3 = -1.5$

Degrees of Freedom

- Calculating the degrees of freedom (just minus 1, actually)
- $df_{between} = 3 1 = 2$
- $df_{within} = 8 1 = 7$

Sum of Squares

• SS_{between}: Sum of squares between conditions

 $\sum A^{i^{2}} \cdot \#measures$ = (-1.33)² * 3 + (2.33)² * 3 + (1.4)² * 2 = 26.17

• SS_{within}: Sum of squares within conditions $\sum_{i} \sum_{j} (y_{ij} - y_{i})^{2}$ $= [(1-1.667)^{2} + (2 - 1.6667)^{2} + (2 - 1.6667)^{2}] + [0.667] + [0.5] = 1.83$

Calculating the Mean Square

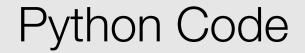
- MS = SS / df
- $MS_{between} = SS_{between} = 26.17 / 2 = 13.08$

- MS_{within} = $\frac{SS_{within}}{df_{within}}$ = 1.83 / 5 = 0.37
- $F = MS_{between} = 13.08 / 0.37 = 35.68$

Interpretation

- The F-value says us how far away we are from the hypothesis of indistinguishability between the error and the conditions (treatment)
- A large F-value implies that the effect of the treatment (conditions) is relevant
- We calculate the critical value for the level $\alpha = 5\%$ with degrees of freedom 2 and 5.
 - p = 0.011 => We can reject the hypothesis that $A_{mouse} = A_{touch} = A_{speech} = 0$

F		Degrees of Freedom in the Numerator				
α=	0.05	6	7	8	9	10
or	1	234.0	236.8	238.9	240.5	241.9
nat	2	19.33	19.35	19.37	19.38	19.40
Denominator	3	8.94	8.89	8.85	8.81	8.79
ence	4	6.16	6.09	6.04	6.00	5.96
	5	4.95	4.88	4.82	4.77	4.74
the	6	4.28	4.21	4.15	4.10	4.06
.⊑	7	3.87	3.79	3.73	3.68	3.64
Freedom	8	3.58	3.50	3.44	3.39	3.35
eed	9	3.37	3.29	3.23	3.18	3.14
Fre	10	3.22	3.14	3.07	3.02	2.98
of	12	3.00	2.91	2.85	2.80	2.75
Degress	15	2.79	2.71	2.64	2.59	2.54
egr	20	2.60	2.51	2.45	2.39	2.35
Δ	25	2.49	2.40	2.34	2.28	2.24



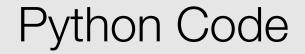
from scipy import stats

```
F, p = stats.f_oneway(d_data['ctrl'], d_data['trt1'],
d_data['trt2'])
```

Factorial ANOVA

- Factorial ANOVA (two-way) measures whether a combination of independent variables predict the value of a dependent variable
- Suits between-group design, with multiple conditions

Observation	Gender	Dosage	Alertness
1	m	а	8
2	m	а	12
3	m	а	13
4	m	а	12
5	m	b	6
6	m	b	7
7	m	b	23
8	m	b	14
9	f	а	15
10	f	а	12
11	f	а	22
12	f	а	14
13	f	b	15
14	f	b	12
15	f	b	18
16	f	b	22



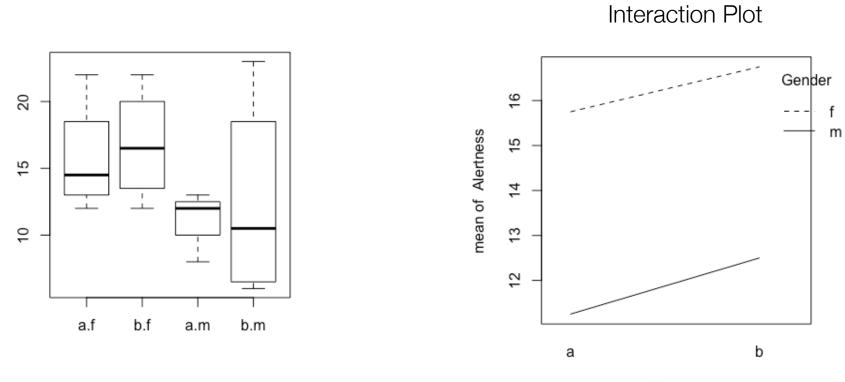
```
formula = 'len ~ C(supp) + C(dose) + C(supp):C(dose)'
model = ols(formula, data).fit()
aov_table = anova_lm(model, typ=2)
```

```
from pyvttbl import DataFrame
df=DataFrame()
df.read_tbl(datafile)
df['id'] = xrange(len(df['len']))
```

```
print(df.anova('len', sub='id', bfactors=['supp', 'dose']))
```

https://www.marsja.se/three-ways-to-carry-out-2-way-anova-with-python/

Visualization



Dosage

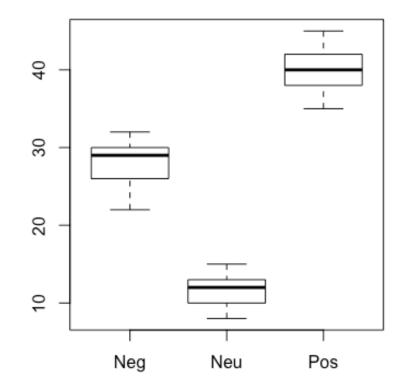
Repeated Measure ANOVA

- In repeated measure ANOVA, we test the same entity in several conditions
 - One independent variable: one way
 - Several independent variables: two way
- Suits a within-subject study with multiple conditions
- The design should be balanced: without missing values in some conditions

```
aov = df.anova('rt', sub='Sub_id', wfactors=['condition'])
print(aov)
```

Observation	Subject	Valence	Recall
1	Jim	Neg	32
2	Jim	Neu	15
3	Jim	Pos	45
4	Victor	Neg	30
5	Victor	Neu	13
6	Victor	Pos	40
7	Faye	Neg	26
8	Faye	Neu	12
9	Faye	Pos	42
10	Ron	Neg	22
11	Ron	Neu	10
12	Ron	Pos	38
13	Jason	Neg	29
14	Jason	Neu	8
15	Jason	Pos	35

Visual Representation



Kruskal-Wallis rank sum test

We can use the Kruskal-Wallis rank sum test to compare the means of non-parametric groups

```
1 # Kruskal-Wallis H-test
2 from numpy.random import seed
3 from numpy.random import randn
4 from scipy.stats import kruskal
5 # seed the random number generator
6 seed(1)
7 # generate three independent samples
8 data1 = 5 * randn(100) + 50
9 data2 = 5 * randn(100) + 50
10 data3 = 5 * randn(100) + 52
11 # compare samples
12 stat, p = kruskal(data1, data2, data3)
13 print('Statistics=%.3f, p=%.3f' % (stat, p))
```



- ANOVA uses general analysis of variance to
- F-value as the main inferential statistics
- One way / two way / repeated measures

Post-Hoc Tests

Data Science in the Wild, Spring 2019

- Analysis of variance just tells us there is at least one level that is significantly different than the other
- It does not tell us which level is different and how
- t-tests would not keep the alpha level in the confidence interval

Types of Post-Hoc Tests

- Fisher's least significant difference (LSD)
- The Bonferroni procedure
- Holm–Bonferroni method
- Tukey's procedure
- And many more...

Tukey's HSD (honest significant difference)

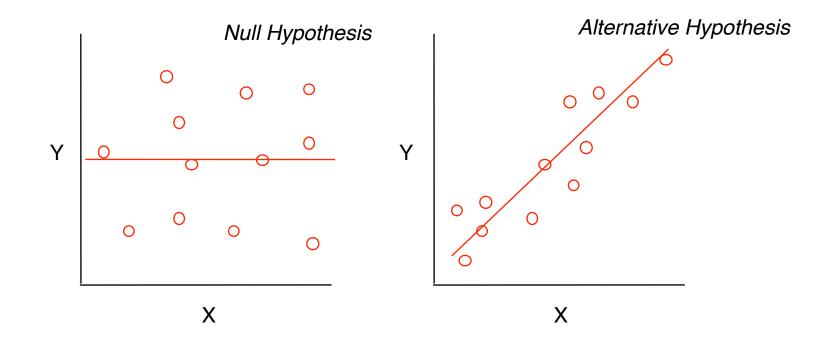
- Tukey's test is based on a formula very similar to that of the t-test, except that it corrects for family-wise error rate
- When there are multiple comparisons being made, the probability of making a Type I error within at least one of the comparisons, increases — Tukey's test corrects for that
- It is suitable for multiple comparisons than a number of t-tests would be

Correlation Tests

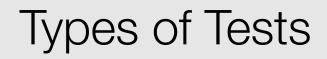
Data Science in the Wild, Spring 2019

Correlation

• A correlation measures the "degree of association" between two variables



- Correlation: Two factors are correlated if there is a relationship between them
- For parametric data, the most common test is the Pearson's product moment correlation coefficient test.
 - Pearson's r: ranges between -1 to 1
 - Pearson's r square represents the proportion of the variance shared by the two variables



- Pearson's product-moment coefficient
 - Tests linearity for parametric data, but pretty robust
 - The sample is independently and randomly drawn
 - A linear relationship between the two variables is present
 - When plotted, the lines form a line and is not curved
 - There is homogeneity of variance
- Spearman test
 - Tests non-parametric data.

Given paired data {(x₁, y₁), ..., (x_n, y_n)} consisting of n pairs, r_{xy} is defined as

$$r_{xy} = rac{\sum_{i=1}^n (x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^n (x_i - ar{x})^2} \sqrt{\sum_{i=1}^n (y_i - ar{y})^2}}$$

- where:
 - n is sample size
 - x_i, y_i are the individual sample points indexed with i
- $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is the the sample mean

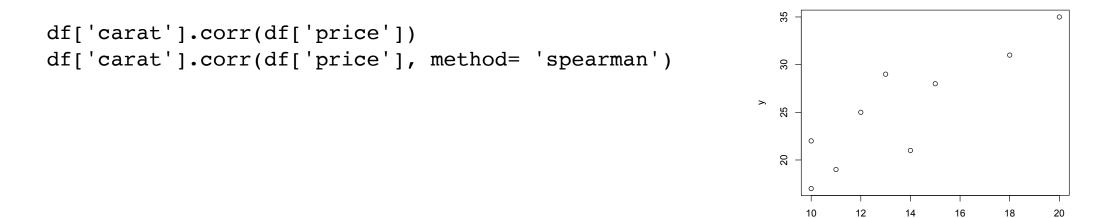


Correlation is measured in:

- "r" (parametric, Pearson's)
- "p" rho (non-parametric, Spearman's)
- Both range in [-1,1], where 0 is no correlation

	small size	medium size	large size
Pearson's r	0.1	0.3	0.5

Example



х

Non-Parametric

```
> cor.test(x,y,method="spearman")
```

```
Spearman's rank correlation rho
```

```
data: x and y
S = 22.5933, p-value = 0.00789
alternative hypothesis: true rho is not equal to 0
sample estimates:
    rho
```

0.8117226

Summary

- Multi-factor analyses
- One way / Two way
- Repeated measures
- Posthoc tests
- Correlation tests