
Reinforcement Learning
A brief introduction

Heejin Jeong

University of Pennsylvania

References:
Reinforcement Learning: An Introduction by A. Barrto and R. S. Sutton
Reinforcement Learning Course Slides by David Silver, UCL and Deepmind

Table of contents

1. What is Reinforcement Learning?

2. Markov Decision Process

3. Dynamic Programming

4. Exploration-Exploitation Trade-off

5. Monte-Carlo Methods

6. Q-learning

7. Value Function Approximation

8. Policy Gradient Methods 1

What is Reinforcement Learning?

Machine Learning

→ RL gives a mathematical framework for sequential decision
making!

2

Reinforcement Learning Origins

3

Reinforcement Learning Framework

Goal of RL agent: To learn an optimal policy, π∗ which maximizes its
expected total discounted future reward

• Trial-and-error Search
• Delayed Reward

4

Examples of Reinforcement Learning Applications

• Playing Video/Board/Strategy
games

• Finance

• Robotics

• Medicine

• Recommendation system

5

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}

Markov Decision Process

Finite Markov Decision Process (MDP)

Markov Assumption
The future is independent of the past given the present

P(xt+1|x0, · · · , xt) = P(xt+1|xt)

MDP Tuple: M =< S,A,P,R, γ >

• State space, S : a finite set of states. st ∈ S
• Action space, A: a finite set of actions. at ∈ A
• Transition Probability Kernel, P : S ×A× S → [0, 1]

p(s′|s, a) = P(st+1 = s′|st = s, at = a)

• Reward function, R : S ×A → IR or R : S ×A× S → IR

R(s, a) = E [rt+1|st = s, at = a]

R(s, a, s′) = E
[
rt+1|st = s, at = a, st+1 = s′

]
• Discount factor, γ ∈ [0, 1]

6

Finite Markov Decision Process (MDP) - example

Can you guess?

7

Finite Markov Decision Process (MDP)

Policy

• Stochastic Policy, π : S ×A → [0, 1]
• Deterministic Policy, π : S → A

Return
Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−1rt+T

T <∞ for an episodic task, T =∞ for a continuing task

Value Function

Vπ(s) = Eπ

[∞∑
k=0

γkR(st+k,at+k) |st = s
]
= Eπ [Gt |st = s]

Action Value Function (Q value function)

Qπ(s,a) = Eπ

[∞∑
k=0

γkR(st+k,at+k) |st = s,at = a
]
= Eπ [Gt |st = s,at = a]

8

Bellman Optimality

Bellman Expectation Equation

Gt = rt+1 + γrt+2 + γ2rt+3 · · · = rt+1 + γGt+1
Vπ(s) =

∑
a

π(a|s)
∑
s′

∑
r
p(s′, r|s,a) [r+ γEπ [Gt+1 |st+1 = s′]]

=
∑
a

π(a|s)
∑
s′

∑
r
p(s′, r|s,a) [r+ γVπ(s′)]

= E [r+ γVπ(s′)]

Bellman Optimality Equation

V∗(s) = max
π

Vπ(s)

Q∗(s,a) = E [R(s,a) + γV∗(s′)]

= E
[
R(s,a) + γmax

a′∈A
Q∗(s′,a′)

]
V∗(s) = max

a∈A
Q∗(s,a)

9

Markov Decision Process - Optimality

Optimal policy
π∗(s) = argmax

a∈A
Q∗(s,a)

10

How to solve MDPs?

11

Dynamic Programming

Dynamic Programming

Dynamic Programming

• Break down into sub-problems
• Solve the sub-problems
• Combine the sub-problem solutions

Applying to an MDP (but not limited to)

• Bellman equation is a recursive decomposition
• Dynamic Programming can solve an MDP with full knowledge of
the MDP

12

Policy Iteration

1. Policy Evaluation : Vπ(s) = E [r+ γVπ(s′)]
For all s ∈ S ,
Vk+1(s) =

∑
s′,r p(s′, r|s, π(s)) [r+ γVk(s′)]

2. Policy Improvement
For all s ∈ S

π(s) = argmax
a∈A

∑
s′,r

p(s′, r|s, π(s)) [r+ γV(s′)]

Principle of Optimality

Generalized Policy Iteration (GPI) is the general
idea of interacting Policy Evaluation and Policy
Improvement independent of the granularity of
the two processes. Almost all reinforcement
learning methods are well described as GPI.

13

Policy Iteration

14

Exploration-Exploitation
Trade-off

When should I stop exploring?

• State: |S| = 1
• Action: ak: pulling k-th arm
• Gambling Machines: Return 1 with
unknown probability pk and 0
otherwise

• Reward = 1 or 0
• Cost : wasting in playing a
suboptimal pull

Should I select the best arm based on
my current knowledge?
Or,
Should I explore other arms?

15

Control in RL

• Action (behavior) policy, µ : policy for choosing an action
• Target policy, π : policy that we want to update
• On-policy Control
: Learning about a policy π using experience sampled from π

(i.e. µ = π)
• Off-policy Control
: Learning a policy π using experience sampled from µ (i.e.
µ ̸= π)

• Safe Exploration
• Learn from observing others

16

Example: ϵ-greedy Exploration

• Continual Exploration
• With probability ϵ perform a randomly selected action
• With probability 1− ϵ perform a greedy action

• For any ϵ-greedy policy, the ϵ-greedy policy µ with respect to Qπ

is an improvement
• Time-varying ϵ = ϵt

ϵt =
n0

n0 + visits(st)
where n0 : constant

17

Learning Methods

18

Monte-Carlo Methods

Monte Carlo Methods in RL

• Monte Carlo – repeated random sampling to obtain numerical
results

• Ways of solving RL problems based on averaging complete
sample returns

• Instead of using the expectation, we compute a complete return
• Therefore, defined only for episodic environments

[Backup Diagrams]

19

Monte Carlo Prediction

• Return, Gt = rt+1 + · · ·+ γT−1rt+T
In MC, use empirical mean return starting
from st or (st,at) instead of expected return
is used for Vπ(st) or Qπ(st,at)

• Vπ(s) = E [Gt|st = s] = average of the
returns following all the visits to s in a set
of episodes

• Qπ(s,a) == E [Gt|st = s,at = a] = average of
the returns following all the visits to (s,a)
pair in a set of episodes

20

Monte Carlo Updates

21

Monte Carlo Updates

Incremental Monte Carlo Updates
Suppose we have a sequence of episode samples for s,a and
consider only the first visit to s,a
: G(1)(s,a), · · · ,G(n)(s,a) where G(k) is the return sample from the kth
episode.
Then, the update rule for Qn(s,a) is:

Qn+1(s,a) = Average Return =

∑n
k=1 wkG(k)(s,a)∑n

k=1 wk
=Qn(s,a) + α

(
G(n)(s,a)− Qn(s,a)

)

α : learning rate

22

Off-policy Monte Carlo Control

Off-policy Monte Carlo Control Algorithm

Monte Carlo Control converges with action policy which is greedy in
the limit if all (s,a) ∈ (S,A) pairs are visited infinitely often.

23

Q-learning

Temporal Difference Prediction

• Combination of DP and MC
• Unlike MC, TD learns from your current predictions rather than
waiting until termination

• TD(0): One-step look ahead
• TD target : rt+1 + γV(st+1)
• TD error : δt = rt+1 + γV(st+1)− Q(st, at)

24

Q-learning : Off-policy TD(0)

• On experience < st,at, rt+1, st+1 > with greedy target policy π

Q(st,at)←Q(st,at) + α · TD error
←Q(st,at) + α (rt+1 + γV(st+1)− Q(st,at))

where α ∈ (0, 1) is a learning rate.

Since it is off-policy, V(st+1) = maxa′ Q(st+1,a′).
• Convergence is guaranteed for discrete S,A if:

• α ∈ (0, 1)
•
∑

t αt = ∞,
∑

t α
2
t < ∞

• All (s, a) pairs are visited infinitely often

25

Q-learning : Off-policy TD(0)

Q-learning Algorithm

When your subsequent state st+1 = S′ is a terminal state, your
expected future total reward is just the immediate reward:
TD target = rt+1

26

MC vs. Q-learning

• MC: High Variance, Low Bias
→ Less sensitive to initial Q values

• Q-learning (TD): Low Variance, High Bias
• Online learning is available. We wait only one time step!
• Applications with long episodes : delaying all learning until an
episode’s end is too slow

• Non-episodic (continuing) tasks

• It considers experimental actions
• Not theoretically proven, but in practice, TD methods converges
faster than constant α MC methods on stochastic tasks

27

Summary

28

Value Function Approximation

Curse of Dimensionality

29

Value Function Approximation

Solution for large MDPs:

V̂(s; θ) ≈Vπ(s)
Q̂(s,a; θ) ≈Qπ(s,a)

• Generate from seen states to unseen states
• Update parameter θ using MC or TD learning

Therefore, we learn the parameter of the function which has s or s,a
as an input and V̂ or Q̂ as an output.

30

Function Approximators

• Linear Combinations of features
• Neural Network
• Decision Tree
• Nearest Neighbor
• Fourier / Wavelet basis

Differentiable?

31

Value Function Approximation by Stochastic Gradient Descent

Suppose J(θ) is a differentiable function of parameter θ:

∇θJ(θ) =


∂J(θ)
∂θ1...
∂J(θ)
∂θn


The goal is to find θ∗ which minimizes the Mean Square Value Error:

J(θ) = Es∼µ(·)

[(
Vπ(s)− V̂(s; θ)

)2]
∂J(θ)
∂θ

= 2Es∼µ(·)

[
Vπ(s)− V̂(s; θ)

] (
−∇θV̂(s; θ)

)
Then, update θ with the direction of minimizing the error:

∆θ = − 12α∇θJ(θ)

32

Value Function Approximation by Stochastic Gradient Descent

Stochastic Gradient Descent, (SGD)
Instead of computing the exact expectation, sample a value

∆θ = α
(
Vπ(s)− V̂(s; θ)

)
∇θV̂(s; θ)

→ Its expected update is equal to the full gradient update!

33

Feature Vector

How do we compute V̂(s; θ)?

Represent state by a feature vector

ϕ(s) =

ϕ1(s)...
ϕn(s)


For example,

• Trends in the stock market
• Distance of robot from landmarks:
s is robot’s position and positions of the landmarks

• Principled Component Analysis
• Representation learning

34

Linear Value Function Approximator

The value function is represented by :

V̂(s; θ) = ϕ(s)Tθ

Then,
J(θ) = Eπ

[(
Vπ(s)− ϕ(s)Tθ

)2]
→ quadratic in θ, therefore linear in θ in its gradient!

∆θ = α
(
Vπ(s)− ϕ(s)Tθ

)
ϕ(s)

How about Table Look-up Features?
How do we compute Vπ(s)?

35

Online (Incremental) Prediction Algorithm

Monte-Carlo with Value Function Approximation
Return, Gt = rt+1 + γrt+2 + · · · γT−1rt+T

TD(0) with Value Function Approximation
Similar to MC, but instead of Gt, use:

rt+1 + γV̂(st+1; θ)

Table Lookup Linear Non-Linear
MC Control on-policy Optimal Optimal Diverge
TD(0) on-policy Optimal Diverge Diverge

MC Control off-policy Optimal Optimal Diverge
TD(0) off-policy Optimal Diverge Diverge

36

Control with Function Approximation

Consider Qπ(s,a) and s,a instead of Vπ(s) and s.

∆θ = − 12α∇θJ(θ) = αEπ
[
Qπ(s,a)− Q̂(s,a; θ)

]
∇θQ̂(s,a; θ)

Its SGD update for the linear function approximation:

∆θ = α
(
Qπ(s,a)− Q̂(s,a; θ)

)
ϕ(s,a)

Online (Incremental) Control Algorithm

• For MC, Qπ(s,a) target : Gt
• For off-policy TD(0), Qπ(s,a) target : rt+1 + γmaxa Q̂(st+1,a; θ)

37

Batch Reinforcement Learning

Least Square Prediction
Collect Agent’s experience, D := {(s1, Vπ1), · · · , (sT, VπT)}
Least square algorithm:

minimizeθ LS(θ)

where LS(θ) =
T∑
t=1

(
Vπt − V̂(st; θ

)2
=ED

[(
Vπ − V̂(s; θ

)2]

SGD with Experience Replay
Repeat,
(1) Sample a pair, (s, Vπ) ∼ D
(2) Apply SGD, ∆θ = α

(
Vπ − V̂(s; θ

)
∇θV̂(s; θ)

38

Convergence

Value Prediction Algorithms:

Table Lookup Linear Non-Linear
MC Control on-policy Optimal Optimal Diverge
TD(0) on-policy Optimal Diverge Diverge

MC Control off-policy Optimal Optimal Diverge
TD(0) off-policy Optimal Diverge Diverge

Control Algorithms:

Table Lookup Linear Non-Linear
MC Control Optimal Near-optimal Diverge
Q-learning Optimal Diverge Diverge

39

Deep Reinforcement Learning

Figure 1: Successful Deep RL Examples: TD Gammon, Atari Games, Game of
Go

40

Deep Q-network

Major Features of DQN : Experience Replay and fixed Q-targets

Target Value, yj = rj + γmaxa′ Q(ϕj+1,a′; θ−) where θ− are target
network parameters.

41

Deep Q-network in Atari

• state : a stack of raw pixel images from the last 4 frames
• action : 4-18 joystick/button positions
• reward : score

42

Deep Q-network in Atari

43

var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}

Policy Gradient Methods

Policy-Based RL

Instead of π∗(s) = argmaxa Q∗(s,a), we want to explicitly learn an
optimal policy:

πθ(s,a) = Pr(a|s, θ)
Finding θ which maximizes a performance measure
J(θ)→ optimization problem
Policy Gradient: Optimize using stochastic gradient ascent

θt+1 = θt + α ˆ∇J(θt)

44

Policy-Based RL

With a function approximation, x(s,a1) = [1, 0]T, x(s,a2) = [0, 1]T, we
need a stochastic policy.

• Advantages of Policy-based RL
• Stochastic Policies (for POMDP)
• Better Convergence Properties (at least local optima)
• Effective in high-dimensional or continuous action spaces

• Disadvantages of Policy-based RL
• Typically converge to a local rather than global optimum
• Sample inefficient and high variance

45

Policy Objective Functions

Measure of the quality of a policy πθ

1. Episodic Environments with a starting state, s0

J(θ) = Vπθ (s0) = Eπθ
(V0)

2. Continuing Environments
• Average Value

Jave,V(θ) =
∑
s

ρπθ (s)Vπθ (s)

• Average Reward per time-step

Jave,R(θ) =
∑
s

ρπθ (s)
∑
a

πθ(s, a)R(s, a)

ρπθ : stationary distribution of Markov chain for πθ

46

Policy Gradient Methods

This is an optimization problem : Find θ that maximize J(θ).

Gradient Ascent:
∆θ = α∇θJ(θ)

Policy Gradient:

∇θJ(θ) =


∂J(θ)
∂θ1...
∂J(θ)
∂θn


How to estimate the gradient?

• Computing Gradients by Finite Differences

∂J(θ)
∂θn

≈ J(θ + ϵuk)− J(θ)
ϵ

where uk is unit vector.
→ Simple but noisy and inefficient

47

Policy Gradient Methods

Policy Gradient Theorem
For any differentiable policy πθ(s,a), for any of the policy objective
functions J(θ), the policy gradient is:

∇θJ(θ) = Eπθ
[∇θπθ(s,a)Qπθ (s,a)]

Loglikelihood Trick, Score Function
Assuming that:

1. πθ is differentiable whenever it is non-zero
2. ∇θπθ(s,a)

∇θπθ(s,a) = πθ(s,a)
∇θπθ(s,a)
πθ(s,a)

∇θπθ(s,a)
πθ(s,a) = ∇θ log(πθ(s,a))→ Score Function

48

Policy Examples

Softmax Policy
ϕ(s,a)Tθ : linear combination

πθ(s,a) ∝ eϕ(s,a)
Tθ

Then, the score function is:

∇θ log(πθ(s,a)) = ϕ(s,a)− Eπθ
[ϕ(s, ·)]

Gaussian Policy
The most common policy for continuous action spaces.

µ(s) = ϕ(s)Tθ

Then, an action is selected by a ∼ N (µ(s), σ2).

The score function:

∇θ log(πθ(s,a)) =
(a− µ(s))ϕ(s)

σ2

49

REINFORCE : Monte Carlo Policy Gradient

∇θJ(θ) =Eπθ
[∇θ logπθ(st,at)Qπθ (st,at)]

=Eπθ
[∇θ logπθ(st,at)Gt]

Stochastic Gradient Ascent Algorithm:

θt+1 = θt + αGt logπθ(st,at)

(Williams, 1992) 50

Actor-Critic Algorithm

Approximating Policy Gradient using Critic in order to reduce the
large variance.

• Actor: Update the policy parameter θ (Policy Improvement)
• Critic: Update the Q-function, Q(s,a;w) (Policy Evaluation)

∇θJ(θ) =Eπθ
[∇θ logπθ(st,at)Qπθ (st,at)]

≈Eπθ
[∇θ logπθ(st,at)Q(st,at;w)]

where w is a parameter of a function approximator of Q

51

	What is Reinforcement Learning?
	Markov Decision Process
	Dynamic Programming
	Exploration-Exploitation Trade-off
	Monte-Carlo Methods
	Q-learning
	Value Function Approximation
	Policy Gradient Methods

	fd@rm@0:
	fd@rm@1:

