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What is Reinforcement Learning?
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— RL gives a mathematical framework for sequential decision
making!
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Reinforcement Learning Framework

action, a;~ (- |s;)
state, s,

(o)
A

Learning
Environment

Feedback (reward, 1;44)

Goal of RL agent: To learn an optimal policy, #* which maximizes its
expected total discounted future reward

- Trial-and-error Search

- Delayed Reward



Examples of Reinforcement Learning Applications

- Playing Video/Board/Strategy
games

- Finance

- Robotics

- Medicine

- Recommendation system

Individualized sepsis treatment using
reinforcement learning
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Markov Decision Process



Finite Markov Decision Process (MDP)

Markov Assumption
The future is of the past

P(Xtg1[Xo0, - -+ 5 Xe) = P(Xea[Xe)
MDP Tuple: M =< S, A, P,R,~v >
- State space, S: a finite set of states. sy € S

- Action space, A: a finite set of actions. a; € A
- Transition Probability Kernel, P: S x A x S — [0,1]

p(s'|s,a) = P(stt1 = S'|st = s, at = a)
- Reward function,R: S x A +ROrR: S x AxS —R
R(s,a) = E[relst = s, ac = a]
R(s,a,s") =E [rip|st = s,ar = a,5t41 = 5]

- Discount factor, v € [0,1]



Finite Markov Decision Process (MDP) - example

Can you guess?

action, a

action, b r=2

With probability P=0.1, the other action is executed



Finite Markov Decision Process (MDP)

Policy
- Stochastic Policy, 7 : § x A — [0,1]

- Deterministic Policy, 7 : S — A

Return
Gt = ep1 + Yrep2 + Vol + -+ eyt

T < oo foran task, T= oo for a task

Value Function

ZVkR(StHw Arr) St =S| = Ex [Ge ]St = 5]

k=0

Vi(s) =E,

Action Value Function (Q value function)

oo
ZV’?R(SHM Arpr) |Se=S,ar =a | =E; [G|s; =S,a; = a]

k=0

Q™ (s,a) =E,




Bellman Optimality

Bellman Expectation Equation

Gt = Fep1 + a2 + Vw3 - = M1 + YGep
Vi(s) = _m(als) DY p(s',rls,a) [r + VEx [Ges [Ster = S]]

a s’ r

= w(als) > > p(ssrls,a) [r + V(s
a s’ r

=E[r+yV7(s)]
Bellman Optimality Equation
V*(s) = max V" (s)
Q*(s,a) = E[R(s,a) + vV (s')]
— * / /
=E |R(s,a) +ymaxQ*(s’,a’)

V(s) = maxQ*(s,a) 9



Markov Decision Process - Optimality

action, a
= P = = N
“0.0"0"9"0>
action, b r=2

With probability P=0.1, the other action is executed
Q* a b
0 40.7 38.9
1 45.5 39.4
2 51.4 40.1
3 58.7 40.9
4 67.7 41.9

Optimal policy

7*(s) = argmax Q*(s, a)
acA



How to solve MDPs?

Dynamic Generalized

Known Programming Policy Iteration

Simple Model

Solving

MDP
Unknown or

Complicated
Model

1



Dynamic Programming




Dynamic Programming

Dynamic Programming

- Break down into sub-problems
- Solve the sub-problems

- Combine the sub-problem solutions
Applying to an MDP (but not limited to)

- Bellman equation is a recursive decomposition

- Dynamic Programming can solve an MDP with full knowledge of
the MDP



Policy Iteration

1. Policy Evaluation : V™(s) = E[r + V™ (s')]
Foralls € S,
Viesa(S) = 2o, P(S', 1S, m(8)) [r + YVie(s')]
2. Policy Improvement
Forallse S

7(s) = argmax Z p(s’,rls, m(s)) [r + yV(s')]

acA sr

Principle of Optimality

Generalized Policy Iteration (GPI) is the general
idea of interacting Policy Evaluation and Policy
Improvement independent of the granularity of
the two processes. Almost all reinforcement
learning methods are well described as GPI.

evaluation

Vs vy
T |4
=+ greedy(V)

improvement



Policy Iteration

ration (using iterative policy evaluation)

1. Initialization

V(s) € R and n(s) € A(s) arbitrarily for all s € 8

2. Policy Evaluation
Repeat
A0
For each s € 8:
v+ V(s)
V(s) + Xy, p(s,7ls,m(s) [r +7V(5)]
A max(A, |v — V(s)])

until A < @ (a small positive number)

3. Policy Improvement
policy-stable « true
For each s € 8:
old-action «+— m(s)
n(s) < argmax, >, . p(s',r|s,a) [T + ‘yV(s’)J
If old-action # w(s), then policy-stable < false
If policy-stable, then stop and return V =~ v, and 7 = m,; else go to 2

14



Exploration-Exploitation
Trade-off



When should I stop exploring?

ﬁ vironment
) a~

<' Rewary
Interpreter T
% &

Action =

“1s)

- State: |S| =1
- Action: ag: pulling k-th arm
- Gambling Machines: Return 1 with

unknown probability p, and 0
otherwise

- Reward =1o0r0

- Cost: wasting in playing a
suboptimal pull

Should | select the best arm based on
my current knowledge?

Or,

Should | explore other arms?



Control in RL

- Action (behavior) policy, p : policy for choosing an action
- Target policy, 7 : policy that we want to update
- On-policy Control
: Learning about a policy 7 using experience sampled from =
(ie. p=m)
- Off-policy Control
: Learning a policy 7 using experience sampled from p (i.e.
p# )
- Safe Exploration
- Learn from observing others

16



Example: e-greedy Exploration

- Continual Exploration
- With probability e perform a randomly selected action
- With probability 1 — e perform a greedy action

- For any e-greedy policy, the e-greedy policy i with respect to Q™
is an improvement

- Time-varying € = ¢

n
€ = S — where ng: constant
No + Visits(st)

o ny = 100

4 200 400 600 800 1000
n(s,)



Learning Methods

Monte-Carlo
methods

TD methods Q-learning

Model-Free

Policy Gradient

Actor-Critic
Methods

M =<S,APRy> |



Monte-Carlo Methods




Monte Carlo Methods in RL

- Monte Carlo - repeated random sampling to obtain numerical
results

- Ways of solving RL problems based on averaging complete
sample returns

- Instead of using the expectation, we compute a
- Therefore, defined only for episodic environments

[Backup Diagrams]

DP MC

d terminal state

19



Monte Carlo Prediction

Gt =T+ 4+ s
In MC, use empirical mean return starting
from s; or (s, a;) instead of expected return
is used for V™ (s;) or Q™ (s, a)
- V7(s) = E[G;|s; = s] = average of the
returns following all the visits to s in a set
of episodes

- Q™(s,a) == E|[Gi|s; = s,a; = a] = average of
the returns following all the visits to (s, a)
pair in a set of episodes Iﬁ

20



Monte Carlo Updates

Sample an episode following
the current action policy
/ (obtain a return, G;, of the episode)

evaluation
m
m Q

7~ greedy(Q)

improvement

Update the action value with /

the average of [G;, Gy, -, Gy]

21



Monte Carlo Updates

Incremental Monte Carlo Updates

Suppose we have a sequence of episode samples for s,a and
consider only the first visit to s, a

: GM(s,a),---,GM(s,a) where G( is the return sample from the kth
episode.

Then, the update rule for Q,(s, a) is:

n
w,GR) (s, a
Qn41(S,a) = Average Return = D b nk (s,0)
D ket W

=Qn(s,a) + a (G(”)(S, a) — Qu(s, a))

«: learning rate

22



Off-policy Mo

Off-policy Monte Carlo Control Algorithm

Initialize, for all s € 8, a € A(s):
Q(s,a) « arbitrary
C(s,a) +0
7(s) « a deterministic policy that is greedy with respect to @

Repeat forever:
Generate an episode using any soft policy
So, 4o, B1, - - -, ST—1, A1, R, ST

G+ 0

W1

Fort=T—-1,T7—2,... downto 0:
G+ vG + Ry

C(Sy, Ay)  C(Sp, Ay) +W

Q(St, Ar) + Q(St, Ad) + gz (G — Q(St, Ar)]

m(S;) « argmax, Q(S;,a) (with ties broken consistently)
If Ay # 7r(S,) then ExitForLoop

W e Wl

Monte Carlo Control converges with action policy which is greedy in

the limit if all (s,a) € (S,.A) pairs are visited infinitely often.
23



Q-learning




Temporal Difference Prediction

- Combination of DP and MC

- Unlike MC, TD learns from your rather than
waiting until termination

- TD(0): One-step look ahead

- TD target: rep + yV(St1)
- TD error: 6t = regr + YV(St+1) — Q(St, ar)

-

MC D

24



Q-learning : Off-policy TD(0)

- On experience < S, ay, 41, St > With greedy target policy 7

Q(st, ar) «<Q(s¢, ar) + - TD error
<Q(St, a¢) + a(regr +yV(serr) — Q(st, ar))

where a € (0,1) is a learning rate.

Since it is off-policy, V(St11) = maxqe Q(Se1, @’).
- Convergence is guaranteed for discrete S, A if:
- a€(0,1)

© Yo =00, Ztozg < o0
- All (s, a) pairs are visited infinitely often

25



Q-learning : Off-policy TD(0)

Q-learning Algorithm

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S, A) + Q(S, A) + a[R + ymax, Q(S',a) — Q(S, A)]
S+ 5
until S is terminal

When your subsequent state s;.1 = S’ is a terminal state, your
expected future total reward is just the immediate reward:
TD target = re4q

26



MC vs. Q-learning

- MC: High Variance, Low Bias
— Less sensitive to initial Q values
- Q-learning (TD): Low Variance, High Bias
- Online learning is available. We wait only one time step!
- Applications with long episodes : delaying all learning until an
episode’s end is too slow
- Non-episodic (continuing) tasks

- It considers experimental actions

- Not theoretically proven, but in practice, TD methods converges
faster than constant e MC methods on stochastic tasks

27



Summary

Dynamic Exhaustive
programming search

full
backups
sample Monte Carlo
backups Temporal-
difference
learning

sh;.moyv bootstrapping, A geep =+
backups backups I

28



Value Function Approximation




Curse of Dimensionality

29



Value Function Approximation

Solution for large MDPs:

V(s; 0) =V (s)
Q(s, a; 8) ~Q™ (s, a)

- Generate from seen states to unseen states

- Update parameter 6 using MC or TD learning

Therefore, we of the function which has s ors,a
as an input and ¥V or Q as an output.

30



Function Approximators

- Linear Combinations of features
- Neural Network

- Decision Tree

- Nearest Neighbor

- Fourier / Wavelet basis

Differentiable?

31



Value Function Approximation by Stochastic Gradient Descent

Suppose J(0) is a differentiable function of parameter 6:

9J(0)
00,

Vel(0) = | :
9J(0)
00,

The goal is to find #* which minimizes the Mean Square Value Error:
R 2
JM)_EyM“{OF@)V@ﬁD]

O = 28y [V7(5) - Us:6)] (~Vil(s:6))

Then, update 6 with the direction of minimizing the error:

AH:—%aVMW)

32



Value Function Approximation by Stochastic Gradient Descent

Stochastic Gradient Descent, (SGD)
Instead of computing the exact expectation, sample a value

A =a (W(s) — s 9)) Vol(s; 0)

— Its expected update is equal to the full gradient update!

33



Feature Vector

How do we compute ¥(s; 0)?
Represent state by a feature vector

$1(s)
Pp(s)=1 :

én(s)

For example,

- Trends in the stock market

- Distance of robot from landmarks:

s is robot’s position and positions of the landmarks
- Principled Component Analysis
- Representation learning

34



Linear Value Function Approximator

The value function is represented by :
U(s;0) = o(s)"0
Then, ,
J(6) = Ex [ (v(5) — 6(5)"6)’]
— quadratic in 6, therefore in @ in its gradient!

29 = a (V7(s) ~ 6(s)76) 4(s)

How about Table Look-up Features?
How do we compute V™ (s)?

35



Online (Incremental) Prediction Algorithm

Monte-Carlo with Value Function Approximation
Return, Gt = repq + g2 + - - VT_”’HT

TD(0) with Value Function Approximation
Similar to MC, but instead of G, use:

resr +YV(St41:6)

Table Lookup  Linear  Non-Linear
MC Control on-policy Optimal Optimal Diverge
TD(0) on-policy Optimal Diverge Diverge
MC Control off-policy Optimal Optimal Diverge
TD(0) off-policy Optimal Diverge Diverge

36



Control with Function Approximation

Consider Q™(s,a) and s, a instead of V™(s) and s.
1 A A
A6 = —=aVe)(0) = aky [Q”(s, a) — Q(s, a; 9)} VoQ(s, a; 0)
Its SGD update for the linear function approximation:

A =a (Q”(s, a) — Q(s, a; 9)) é(s, )

Online (Incremental) Control Algorithm

- For MC, Q™ (s, a) target : G;
- For off-policy TD(0), Q™ (s, a) target : riy1 4+ v Maxe Q(Se41, a; )

37



Batch Reinforcement Learning

Least Square Prediction
Collect Agent's experience, D := {(s1, V), -+, (51, VF)}
Least square algorithm:

minimizey LS(6)
T

SGD with Experience Replay

Repeat,

(1) Sample a pair, (s,V™) ~ D

(2) Apply SGD, A6 = (\/fr —Us; 9) Vol(s; 0)

38



Convergence

Value Prediction Algorithms:

Table Lookup  Linear  Non-Linear
MC Control on-policy Optimal Optimal Diverge

TD(0) on-policy Optimal Diverge Diverge
MC Control off-policy Optimal Optimal Diverge
TD(0) off-policy Optimal Diverge Diverge

Control Algorithms:

Table Lookup Linear Non-Linear
MC Control Optimal Near-optimal Diverge
Q-learning Optimal Diverge Diverge

39



Deep Reinforcement Learning

11 your turn

Figure 1: Successful Deep RL Examples: TD Gammon, Atari Games, Game of

Go
40



Deep Q-network

Major Features of DQN : and

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function ¢) with random weights
for episode = 1, M do
Initialise sequence s; = {x} and preprocessed sequenced ¢; = ¢(s1)
fort=1,7 do
With probability € select a random action a,
otherwise select a; = max, Q*(¢(s;), a;0)
Execute action a; in emulator and observe reward r; and image 41
Set 8111 = S, G¢, T¢41 and preprocess Gz 41 = G(S¢+1)
Store transition (¢, a;, re, ¢i+1) in D
Sample random minibatch of transitions (¢;, a;, ;, ¢,+1) from D

Sety, =4 Ti for terminal ¢ ;41
Yi = 7 + ymaxy Q(dj11.d';6) for non-terminal ¢
Perform a gradient descent step on (y; — Q(¢;.a;: 0))2 according to equation
end for
end for

Target Value, y; = r; + vy maxqa Q(¢j41,0’;67) where 6~ are target
network parameters.

41



Deep Q-network in Atari

Convolution
+RelU

Pooling Convolution Pooling Fully Fully Output Predictions
+Rell Connected  Connected

. :'. [ -
Ei RN\

- state : a stack of raw pixel images from the last 4 frames
- action : 4-18 joystick/button positions
- reward : score

-]

42



Deep Q-network in Atari
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Policy Gradient Methods




Policy-Based RL

Instead of 7*(s) = argmax, Q*(s, a), we want to explicitly learn an
optimal policy:

mo(s,a) = Pr(als, 0)
Finding 6 which maximizes a performance measure

J(6) — problem
Policy Gradient: Optimize using stochastic gradient ascent

A

i1 = 0r + aVJ(0r)

I



Policy-Based RL

€ | |-y

- S a a- G

With a function approximation, x(s,as) = [1, 0]", x(s, a;) = [0, 1]", we
need a stochastic policy.

- Advantages of Policy-based RL

- Stochastic Policies (for POMDP)

- Better Convergence Properties (at least local optima)

- Effective in high-dimensional or continuous action spaces
- Disadvantages of Policy-based RL

- Typically converge to a local rather than global optimum
- Sample inefficient and high variance

45



Policy Objective Functions

Measure of the quality of a policy 7y

1. Episodic Environments with a starting state, s

J(0) = V™(s0) = Ex, (Vo)

2. Continuing Environments
- Average Value
Jave,v(e) = Zpﬂ-g (S)\/ 9
8
- Average Reward per time-step
JaveR 9) pre S)Zﬂ'g(s CI
p™e . stationary distribution of Markov chain for mg

46



Policy Gradient Methods

This is an optimization problem : Find € that maximize J(0).

Gradient Ascent:

NG = aVg)(0)

Policy Gradient: 2)(6)
004
Vol(0) = | -

aJ(0)

00,

How to estimate the gradient?

- Computing Gradients by Finite Differences

ol(0) _ J(O + eur) —J(0)
00, €

where uy is unit vector.
— Simple but noisy and inefficient

47



Policy Gradient Methods

Policy Gradient Theorem
For any differentiable policy my(s, a), for any of the policy objective
functions J(0), the policy gradient is:

Vol(0) = Er, [Vema(s, a)Q™ (s, a)]

Loglikelihood Trick, Score Function
Assuming that:

1. mp is differentiable whenever it is non-zero
2. Vgﬂ'g(S,CI)

VQTI'(-)(S7 CI)

Vorg(s,a) = me(s,a) 7005, )

Vﬁ:%s(j)a) = Vg log(mg(s,a)) — Score Function

48



Policy Examples

Softmax Policy
#(s,a)’d : linear combination

mo(s, a) o e?(:0)0

Then, the score function is:
Vo log(ma(s, a)) = ¢(s,a) — Ex, [¢(s, )]

Gaussian Policy
The most common policy for continuous action spaces.

u(s) = ¢(s)'0
Then, an action is selected by a ~ N (u(s), o?).

The score function:

(a — p(s))o(s)

o2

Vo log(me(s,a)) =

49



REINFORCE : Monte Carlo Policy Gradient

Vo)(0) =Er, [Vg logmy(St, ar)Q™ (St, at)]
:]Eﬂ—g [VQ log 7r9(5t7 Gt)Gt]

Stochastic Gradient Ascent Algorithm:
Or11 = 0t + aG; log me(st, ar)

REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic)

Input: a differentiable policy parameterization m(a|s, )
Initialize policy parameter 6 € R
Repeat forever:
Generate an episode Sy, Ao, Ry, ..., Sr—1, Ar_1, Ry, following 7(-|-,0)
For each step of the episode t =0, ..., T-1:
G + return from step ¢
0+ 0+ av'GVeInm(ASt, 0)

(williams, 1992) 50



Actor-Critic Algorithm

Approximating Policy Gradient using Critic in order to reduce the
large variance.

- Actor: Update the policy parameter @ (Policy Improvement)
- Critic: Update the Q-function, Q(s, a; w) (Policy Evaluation)

ve/(e) :Eﬂe [ve log WQ(SU at)oﬂg (Sf7 at)]
%Eﬂe [v9 log WQ(SU at)Q(SU at; W)]

where w is a parameter of a function approximator of Q

51
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